A144450 Second bisection of A061039.
7, 1, 55, 91, 5, 187, 247, 35, 391, 475, 7, 667, 775, 11, 1015, 1147, 143, 1435, 1591, 65, 1927, 2107, 85, 2491, 2695, 323, 3127, 3355, 133, 3835, 4087, 161, 4615, 4891, 575, 5467, 5767, 75, 6391, 6715, 87, 7387, 7735, 899, 8455, 8827, 341, 9595, 9991, 385, 10807, 11227, 1295, 12091, 12535
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
Numerator[1/9 - 1/(2*Range[2, 100])^2] (* G. C. Greubel, Mar 06 2022 *)
-
Sage
[numerator(1/9 -1/(2*n+2)^2) for n in (1..100)] # G. C. Greubel, Mar 06 2022
Formula
a(n) = A061039(2*n+2).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - G. C. Greubel, Mar 06 2022
Extensions
Formula index corrected, extended by R. J. Mathar, Dec 02 2008
Comments