A144452 Antidiagonal expansion of the polynomials: f(x,n) = 1/(exp(t) - Sum_{i=1..n} t^i/i!).
1, 1, 0, 1, 0, -3, 1, 0, 0, -4, 1, 0, 0, -4, 25, 1, 0, 0, 0, -5, 114, 1, 0, 0, 0, -5, -6, -287, 1, 0, 0, 0, 0, -6, 133, -4152, 1, 0, 0, 0, 0, -6, -7, 552, -1647, 1, 0, 0, 0, 0, 0, -7, -8, 1629, 192230, 1, 0, 0, 0, 0, 0, -7, -8, 621, -12610, 807961, 1, 0, 0, 0, 0, 0, 0, -8, -9, 2510, -128579, -10164804, 1, 0, 0, 0, 0, 0, 0, -8, -9, -10, 7381
Offset: 1
Examples
{1}, {1, 0}, {1, 0, -3}, {1, 0, 0, -4}, {1, 0, 0, -4, 25}, {1, 0, 0, 0, -5, 114}, {1, 0, 0, 0, -5, -6, -287}, {1, 0, 0, 0, 0, -6, 133, -4152}, {1, 0, 0, 0, 0, -6, -7, 552, -1647}, {1, 0, 0, 0, 0, 0, -7, -8,1629, 192230}, {1, 0, 0, 0, 0, 0, -7, -8, 621, -12610, 807961}, {1, 0, 0, 0, 0, 0, 0, -8, -9, 2510, -128579, -10164804}, {1, 0, 0, 0, 0, 0, 0, -8, -9, -10, 7381, -725484, -111209111}, {1, 0, 0, 0, 0,0, 0, 0, -9, -10, 2761, 18996, 1522651, 454840554}, {1, 0, 0, 0, 0, 0, 0,0, -9, -10, -11, 11076, -404989, 54082014, 14657978385}
Crossrefs
Cf. A089148.
Programs
-
Mathematica
Clear[f, b, a, g, h, n, t]; f[t_, n_] = 1/(Exp[t] - Sum[t^i/i!, {i, 1, n}]); a = Table[Table[SeriesCoefficient[Series[f[t, m], {t, 0, 30}], n], {n, 0, 30}], {m, 1, 31}]; b = Table[Table[m!*a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}]; Flatten[b]
Formula
f(x,n) = 1/(exp(t) - Sum_{i=1..n} t^i/i!); t(n,m) = Expansion(f(x,n)); t_out(n,m) = m!*t(n-m+1,m).
Comments