cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144482 Semiprimes that are a product of Mersenne primes.

Original entry on oeis.org

9, 21, 49, 93, 217, 381, 889, 961, 3937, 16129, 24573, 57337, 253921, 393213, 917497, 1040257, 1572861, 3670009, 4063201, 16252897, 16646017, 66584449, 67092481, 1073602561, 4294434817, 6442450941, 15032385529, 17179607041
Offset: 1

Views

Author

G. L. Honaker, Jr., Oct 12 2008

Keywords

Comments

As the product of any two primes is semiprime by definition, this is also the list of composite numbers n=x*y where both x and y are Mersenne primes. - Christian N. K. Anderson, Mar 25 2013

Crossrefs

Subsequence of A335882.

Programs

  • Mathematica
    Take[Times@@@Tuples[2^# -1&/@MersennePrimeExponent[Range[10]],2]//Union,30] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 30 2020 *)
  • PARI
    isA000668(n) = (isprime(n)&&!bitand(n,1+n));
    isA144482(n) = ((2==bigomega(n))&&isA000668(vecmin(factor(n)[,1]))&&isA000668(vecmax(factor(n)[,1]))); \\ Antti Karttunen, Jun 28 2020