cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A264772 Triangle T(n,k) = binomial(3*n - 2*k, 2*n - k), 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 15, 4, 1, 84, 21, 5, 1, 495, 120, 28, 6, 1, 3003, 715, 165, 36, 7, 1, 18564, 4368, 1001, 220, 45, 8, 1, 116280, 27132, 6188, 1365, 286, 55, 9, 1, 735471, 170544, 38760, 8568, 1820, 364, 66, 10, 1, 4686825, 1081575, 245157, 54264, 11628, 2380, 455, 78, 11, 1
Offset: 0

Views

Author

Peter Bala, Nov 24 2015

Keywords

Comments

Riordan array (f(x), x*g(x)), where g(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... is the o.g.f. for A001764 and f(x) = g(x)/(3 - 2*g(x)) = 1 + 3*x + 15*x^2 + 84*x^3 + 495*x^4 + ... is the o.g.f. for A005809.
The even numbered columns give the Riordan array A119301, the odd numbered columns give the Riordan array A144484. A159841 is the array formed from columns 1,4,7,10,....
More generally, if R = (R(n,k))n,k>=0 is a proper Riordan array, m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 2, b = 1. See A092392, A264773, A264774 and A113139 for further examples.

Examples

			Triangle begins
.n\k.|......0.....1....2....3...4..5...6..7...
----------------------------------------------
..0..|      1
..1..|      3     1
..2..|     15     4    1
..3..|     84    21    5    1
..4..|    495   120   28    6   1
..5..|   3003   715  165   36   7  1
..6..|  18564  4368 1001  220  45  8  1
..7..| 116280 27132 6188 1365 286 55  9  1
...
		

Crossrefs

Cf. A005809 (column 0), A045721 (column 1), A025174 (column 2), A004319 (column 3), A236194 (column 4), A013698 (column 5). Cf. A001764, A007318, A092392, A119301 (C(3n-k,2n)), A144484 (C(3n+1-k,2n+1)), A159841 (C(3n+1,2n+k+1)), A264773, A264774.

Programs

  • Magma
    /* As triangle */ [[Binomial(3*n-2*k, n-k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264772:= proc(n,k) binomial(3*n - 2*k, 2*n - k); end proc:
    seq(seq(A264772(n,k), k = 0..n), n = 0..10);
  • Mathematica
    Table[Binomial[3 n - 2 k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)

Formula

T(n,k) = binomial(3*n - 2*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(3*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(2*n + 1)*binomial(3*n,n)*x^n.
Showing 1-1 of 1 results.