cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144486 Triangular numbers n*(n+1)/2 with n and n+1 composite, where number of prime factors in n = number of prime factors in n+1. (Prime factors are counted with multiplicity.)

Original entry on oeis.org

45, 105, 231, 325, 378, 561, 595, 741, 990, 1653, 2850, 3655, 3741, 4371, 4465, 4851, 6786, 7021, 7381, 7503, 7750, 8911, 9180, 10011, 10153, 10585, 10878, 11781, 12561, 13530, 14535, 14706, 15225, 15753, 20301, 20503, 21115, 22791, 23005, 23653
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 09 2008

Keywords

Examples

			The first 11 values of n that satisfy the definition are 9, 14, 21, 25, 27, 33, 34, 38, 44, 57 and 75, so
a(1) = 9*10/2 = 45; 9 = 3*3, 10 = 2*5.
a(2) = 14*15/2 = 105; 14 = 2*7, 14 = 3*5.
a(3) = 21*22/2 = 231; 21 = 3*7, 22 = 2*11.
a(4) = 25*26/2 = 325; 25 = 5*5, 26 = 2*13.
a(5) = 27*28/2 = 378; 27 = 3*3*3, 28 = 2*2*7.
a(6) = 33*34/2 = 561; 33 = 3*11, 34 = 2*17.
a(7) = 34*35/2 = 595; 34 = 2*17, 35 = 5*7.
a(8) = 38*39/2 = 741; 38=2*19, 39=3*13.
a(9) = 44*45/2 = 990; 44=2*2*11, 45=3*3*5.
a(10) = 57*58/2 = 1653; 57=3*19, 58=2*29.
a(11) = 75*76/2 = 2850; 75=3*5*5, 76=2*2*19.
		

Crossrefs

Programs

  • Maple
    isA045920 := proc(n) if numtheory[bigomega](n) = numtheory[bigomega](n+1) then true; else false; fi; end: A045920 := proc(n) option remember ; local a; if n =1 then 2; else for a from procname(n-1)+1 do if isA045920(a) then RETURN(a) ; fi; od: fi; end: A000217 := proc(n) n*(n+1)/2 ; end: A144486 := proc(n) A000217(A045920(n+1)) ; end: for n from 1 to 100 do printf("%d,",A144486(n)) ; od: # R. J. Mathar, Dec 10 2008
  • Mathematica
    Times@@#/2&/@Select[Partition[Range[500],2,1],!PrimeQ[#[[1]]] && !PrimeQ[#[[2]]] && PrimeOmega[#[[1]]]==PrimeOmega[#[[2]]]&] (* Harvey P. Dale, May 23 2013 *)
  • PARI
    for(n=2, 1e3, if(bigomega(n+1) == bigomega(n+2) && k = (n+1)*(n+2)/2, print1(k", "))) \\ Altug Alkan, Oct 18 2015

Formula

a(n) = A000217(A045920(n+1)).

Extensions

Corrected and extended by R. J. Mathar and Ray Chandler, Dec 10 2008