A144486 Triangular numbers n*(n+1)/2 with n and n+1 composite, where number of prime factors in n = number of prime factors in n+1. (Prime factors are counted with multiplicity.)
45, 105, 231, 325, 378, 561, 595, 741, 990, 1653, 2850, 3655, 3741, 4371, 4465, 4851, 6786, 7021, 7381, 7503, 7750, 8911, 9180, 10011, 10153, 10585, 10878, 11781, 12561, 13530, 14535, 14706, 15225, 15753, 20301, 20503, 21115, 22791, 23005, 23653
Offset: 1
Examples
The first 11 values of n that satisfy the definition are 9, 14, 21, 25, 27, 33, 34, 38, 44, 57 and 75, so a(1) = 9*10/2 = 45; 9 = 3*3, 10 = 2*5. a(2) = 14*15/2 = 105; 14 = 2*7, 14 = 3*5. a(3) = 21*22/2 = 231; 21 = 3*7, 22 = 2*11. a(4) = 25*26/2 = 325; 25 = 5*5, 26 = 2*13. a(5) = 27*28/2 = 378; 27 = 3*3*3, 28 = 2*2*7. a(6) = 33*34/2 = 561; 33 = 3*11, 34 = 2*17. a(7) = 34*35/2 = 595; 34 = 2*17, 35 = 5*7. a(8) = 38*39/2 = 741; 38=2*19, 39=3*13. a(9) = 44*45/2 = 990; 44=2*2*11, 45=3*3*5. a(10) = 57*58/2 = 1653; 57=3*19, 58=2*29. a(11) = 75*76/2 = 2850; 75=3*5*5, 76=2*2*19.
Programs
-
Maple
isA045920 := proc(n) if numtheory[bigomega](n) = numtheory[bigomega](n+1) then true; else false; fi; end: A045920 := proc(n) option remember ; local a; if n =1 then 2; else for a from procname(n-1)+1 do if isA045920(a) then RETURN(a) ; fi; od: fi; end: A000217 := proc(n) n*(n+1)/2 ; end: A144486 := proc(n) A000217(A045920(n+1)) ; end: for n from 1 to 100 do printf("%d,",A144486(n)) ; od: # R. J. Mathar, Dec 10 2008
-
Mathematica
Times@@#/2&/@Select[Partition[Range[500],2,1],!PrimeQ[#[[1]]] && !PrimeQ[#[[2]]] && PrimeOmega[#[[1]]]==PrimeOmega[#[[2]]]&] (* Harvey P. Dale, May 23 2013 *)
-
PARI
for(n=2, 1e3, if(bigomega(n+1) == bigomega(n+2) && k = (n+1)*(n+2)/2, print1(k", "))) \\ Altug Alkan, Oct 18 2015
Extensions
Corrected and extended by R. J. Mathar and Ray Chandler, Dec 10 2008