A144505 Triangle read by rows: coefficients of polynomials arising from the recurrence A[n](x) = A[n-1]'(x)/(1-x) with A[0] = exp(x).
1, 1, -1, 2, 1, -5, 7, -1, 9, -30, 37, 1, -14, 81, -229, 266, -1, 20, -175, 835, -2165, 2431, 1, -27, 330, -2330, 9990, -24576, 27007, -1, 35, -567, 5495, -34300, 137466, -326515, 353522, 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837
Offset: 0
Examples
The first few polynomials P[n] (n >= 0) are: P[0] = 1; P[1] = 1; P[2] = -x +2; P[3] = x^2 -5*x +7; P[4] = -x^3 + 9*x^2 - 30*x +37; P[5] = x^4 -14*x^3 + 81*x^2 - 229*x +266; P[6] = -x^5 +20*x^4 -175*x^3 + 835*x^2 -2165*x +2431; P[7] = x^6 -27*x^5 +330*x^4 -2330*x^3 +9990*x^2 -24576*x +27007; ... Triangle of coefficients begins: 1; 1; -1, 2; 1, -5, 7; -1, 9, -30, 37; 1, -14, 81, -229, 266; -1, 20, -175, 835, -2165, 2431; 1, -27, 330, -2330, 9990, -24576, 27007; -1, 35, -567, 5495, -34300, 137466, -326515, 353522; 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837; ...
Links
- Seiichi Manyama, Rows n = 0..140, flattened
- Ling Gao, Graph assembly for spider and tadpole graphs, Master's Thesis, Cal. State Poly. Univ. (2023). See pp. 42, 63.
- N. J. A. Sloane, Rows 0 through 25 of the triangle, together with the corresponding polynomials P[n](x).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); f:= func< n,x | x^n*(&+[Binomial(n,j)*Factorial(n+j)*(1-1/x)^(n-j)/(2^j*Factorial(n)) : j in [0..n]]) >; T:= func< n,k | Coefficient(R!( f(n,x) ), k) >; [1] cat [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 02 2023 -
Maple
A[0]:=exp(x); P[0]:=1; for n from 1 to 12 do A[n]:=sort(simplify( diff(A[n-1],x)/(1-x))); P[n]:=sort(simplify(A[n]*(1-x)^(2*n-1)/exp(x))); t1:=simplify(x^(degree(P[n],x))*subs(x=1/x,P[n])); t2:=series(t1,x,2*n+3); lprint(P[n]); lprint(seriestolist(t2)); od:
-
Mathematica
f[n_, x_]:= x^n*Sum[((n+j)!/((n-j)!*j!*2^j))*(1-1/x)^(n-j), {j,0,n}]; t[n_, k_]:= Coefficient[Series[f[n,x], {x,0,30}], x, k]; Join[{1}, Table[t[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Oct 02 2023 *)
-
SageMath
P.
= PowerSeriesRing(QQ, 50) def f(n,x): return x^n*sum(binomial(n,j)*rising_factorial(n+1,j)*(1-1/x)^(n-j)/2^j for j in range(n+1)) def T(n,k): return P( f(n,x) ).list()[k] [1] + flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 02 2023
Formula
Let A[0](x) = exp(x), A[n](x) = A[n-1]'(x)/(1-x) for n>0 and let P[n](x) = A[n](x)*(1-x)^(2n-1)/exp(x). Row n of triangle gives coefficients of P[n](x) with exponents of x in decreasing order.
From Vladeta Jovovic, Dec 15 2008: (Start)
P[n] = Sum_{k=0..n} ((n+k)!/((n-k)!*k!*2^k)) * (1-x)^(n-k).
E.g.f.: exp((1-x)*(1-sqrt(1-2*y)))/sqrt(1-2*y). (End)