cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144507 Column 4 of triangle in A144505.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 20, 330, 5495, 97405, 1867446, 38849790, 875734035, 21320230140, 558453090910, 15677076200786, 469894617088260, 14985440023696415, 506831098757070010, 18125347345533260190, 683518670893880841921, 27112243165544881804755, 1128576366359460556636770
Offset: 0

Views

Author

N. J. A. Sloane, Dec 14 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,0,0,0,0,1]; [n le 6 select I[n] else ((2*n-9)*(n^2-9*n+22)*Self(n-1) + (n-3)*(n-4)*Self(n-2))/((n-5)*(n-6)): n in [1..32]]; // G. C. Greubel, Oct 10 2023
    
  • Maple
    f4:=proc(n) local k; add((n+k-1)!/(4!*(n-k-5)!*k!*2^k),k=0..n-5); end;
    [seq(f4(n), n=0..60)];
  • Mathematica
    Table[Sum[1/6 (n+k+2)!/(2^(k+2) (n-k-2)! k!), {k,0,n-2}], {n, -3, 20}] (* Vincenzo Librandi, Jan 27 2020 *)
  • SageMath
    @CachedFunction
    def A144507(n): return sum(binomial(n-5,j)*rising_factorial(n-4,j+4)/(24*2^j) for j in range(n-4))
    [A144507(n) for n in range(31)] # G. C. Greubel, Oct 10 2023

Formula

a(n) = (1/4!)*Sum_{k=0..n-5} (n+k-1)!/((n-k-5)!*k!*2^k).
a(n) = A001516(n-3)/6 for n > 2. [Corrected by Georg Fischer, Jan 25 2020]
a(n) = ( (2*n-7)*(n^2 -7*n +14)*a(n-1) + (n-2)*(n-3)*a(n-2) )/((n-4)*(n-5)), with a(0)=a(1)=a(2)=a(3)=a(4)=0, and a(5)=1. - G. C. Greubel, Oct 10 2023