cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144536 Denominators of continued fraction convergents to sqrt(3)/2.

Original entry on oeis.org

1, 1, 7, 15, 97, 209, 1351, 2911, 18817, 40545, 262087, 564719, 3650401, 7865521, 50843527, 109552575, 708158977, 1525870529, 9863382151, 21252634831, 137379191137, 296011017105, 1913445293767, 4122901604639, 26650854921601, 57424611447841, 371198523608647
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Examples

			0, 1, 6/7, 13/15, 84/97, 181/209, 1170/1351, 2521/2911, 16296/18817, 35113/40545, ...
		

Crossrefs

Bisections give A011943, A028230.

Programs

  • Maple
    with(numtheory); Digits:=200: cf:=convert(evalf(sqrt(3)/2,confrac); [seq(nthconver(cf,i), i=0..100)];
  • Mathematica
    Denominator[Convergents [Sqrt[3]/2, 30]] (* Vincenzo Librandi, Feb 01 2014 *)
    LinearRecurrence[{0,14,0,-1},{1,1,7,15},30] (* Harvey P. Dale, Sep 15 2017 *)

Formula

G.f.: (1 + x - 7*x^2 + x^3)/(1 - 14*x^2 + x^4). - Colin Barker, Jan 01 2012
a(n) = 14*a(n-2) - a(n-4). - Sergei N. Gladkovskii, Jun 07 2015
a(n) = ((3+sqrt(3))*((-2+sqrt(3))^n + (2+sqrt(3))^n) - (-3+sqrt(3))*((-2-sqrt(3))^n + (2-sqrt(3))^n))/12. - Vaclav Kotesovec, Jun 08 2015
From John Elias, Dec 02 2021: (Start)
a(2*n) = 6*A001353(n)^2 + 1. See illustration in links.
a(2*n+1) = 2*a(2*n) + a(2*n-1). (End)