A144553 Number of chiral pairs of polyominoes with n cells that have precisely the symmetry group of order 4 generated by 90-degree rotations.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 12, 7, 0, 0, 44, 25, 0, 0, 165, 90, 0, 0, 603, 319, 0, 0, 2235, 1136, 0, 0, 8283, 4088, 0, 0, 30936, 14868, 0, 0, 116111, 54526, 0, 0, 438465, 201527, 0, 0, 1663720, 750169, 0, 0, 6342211, 2809931, 0, 0, 24273767
Offset: 1
Keywords
Examples
For a(8)=1, the polyomino is a central 2 X 2 square with one cell attached to each edge of that square. - _Robert A. Russell_, Nov 01 2021
Links
- Robert A. Russell, Table of n, a(n) for n = 1..95
- Tomás Oliveira e Silva, Enumeration of polyominoes
- D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
- D. H. Redelmeier, Table 3 of Counting polyominoes...
- Robert A. Russell, C++ Program
- Toshihiro Shirakawa, Enumeration of Polyominoes considering the symmetry, April 2012, pp. 3-4.
Crossrefs
Programs
-
Mathematica
A006747 = Cases[Import["https://oeis.org/A006747/b006747.txt", "Table"], {, }][[All, 2]]; A006749 = Cases[Import["https://oeis.org/A006749/b006749.txt", "Table"], {, }][[All, 2]]; A030228 = Cases[Import["https://oeis.org/A030228/b030228.txt", "Table"], {, }][[All, 2]]; a[n_] := A030228[[n+1]] - A006747[[n]] - A006749[[n]]; Array[a, 43] (* Jean-François Alcover, Sep 09 2019, updated Aug 17 2022 *)
Formula
a(n) = A030228(n) - A006747(n) - A006749(n). - Jean-François Alcover, Sep 09 2019, after Andrew Howroyd in A030228.
a(n) = (A348848(n/4)+A348849(n)-A142886(n)) / 2, where the first two are F90 and C90 of the Shirakawa link. - Robert A. Russell, Nov 01 2021
a(n) = A351142(n) + A234007(n/4) if n is a multiple of 4, otherwise a(n) = A351142(n). - John Mason, Feb 17 2022
Extensions
a(28) added by Andrew Howroyd, Dec 04 2018
a(29)-a(91) added by Robert A. Russell, May 23 2020
Warning: It seems that the C++ program and the Mathematica program produce different results. This means that the b-file, and possibly even the terms in the DATA lines, are suspect. - N. J. A. Sloane, Aug 17 2022
After John Mason's Apr 15 2023 correction to the b-file of A006749, the discrepancy disappeared. - Andrey Zabolotskiy, Jan 18 2024
Comments