A144594 Primes p such that p, p+4, p+10, p+22, p+24, p+42 are all primes.
19, 37, 499, 1009, 1279, 1429, 2689, 5077, 13687, 16879, 17467, 23017, 25579, 32299, 33577, 41179, 48757, 85597, 92377, 120997, 125617, 128389, 143239, 152419, 159769, 324427, 327469, 351037, 352399, 422857, 473719, 499669, 518737, 519349
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
isA046136 := proc(n) if isprime(n) and isprime(n+4) and isprime(n+10) then true; else false; fi; end: isA144594 := proc(n) if isA046136(n) and isprime(n+22) and isprime(n+24) and isprime(n+42) then true; else false; fi; end: for n from 2 to 1000000 do if isA144594(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Jan 14 2009
-
Mathematica
lst={}; Do[p=Prime[n]; If[PrimeQ[p+4]&&PrimeQ[p+10]&&PrimeQ[p+22]&&PrimeQ[p+24]&&PrimeQ[p+42],AppendTo[lst,p]],{n,3*8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *) Select[Prime[Range[44000]],AllTrue[#+{4,10,22,24,42},PrimeQ]&] (* Harvey P. Dale, Oct 02 2021 *)
Extensions
Definition corrected by N. J. A. Sloane, Jan 13 2009
Inserted missing values R. J. Mathar, Jan 14 2009
More terms from Vladimir Joseph Stephan Orlovsky, Jan 15 2009
Comments