cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144595 Christoffel word of slope 4/7.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

The Christoffel word (or path) of slope s is defined as follows.
Start at (0,0) in the 2-dimensional integer lattice and move up if possible, otherwise right, always keeping below or on the line y = s*x. Write down 0 with a horizontal move, 1 for a vertical move. The first move is necessarily horizontal, so the sequence always begins with 0.
If s is irrational this is called a Sturmian word.
If the first 9 terms are deleted we get the "Upper Christoffel word of slope 4/7" (see Berstal et al., p. 6, Fig. 2).
The length of a Christoffel word of fraction a/b > 0 is a + b, with a ones. - David A. Corneth, Sep 19 2016

References

  • J. Berstel et al., Combinatorics on Words: Christoffel Words and Repetitions in Words, Amer. Math. Soc., 2008.

Crossrefs

Programs

  • Maple
    christoffel:=proc(s,M) local n,x,y,ans;
    ans:=[0]; x:=1; y:=0;
    for n from 1 to M do
    if y+1 <= s*x then ans:=[op(ans),1]; y:=y+1; else ans:=[op(ans),0]; x:=x+1; fi;
    od: ans; end; christoffel(4/7,120);
  • Mathematica
    christoffel[s_, M_] := Module[{n, x=1, y=0, ans={0}}, Do[If[y+1 <= s*x, AppendTo[ans, 1]; y++, AppendTo[ans, 0]; x++], {n, 1, M}]; ans]; christoffel[4/7, 120] (* Jean-François Alcover, Sep 19 2016, adapted from Maple *)
  • PARI
    \\ Christoffel word for nonnegative rational f.
    Cword(f) = {my(n = numerator(f), d = denominator(f), v = vector(n + d), c, s, t = 1, i = 1); v[#v] = 1; while(t<=#v-4, i++; c=(i*f>=s+1); if(c, i-=2; s++, t++); v[t+2]=c); v}
    a(n) = my(c = Cword(4/7)); c[(n-1)%#c+1] \\ David A. Corneth, Sep 19 2016

Formula

Period 11: 0,0,1,0,0,1,0,0,1,0,1.
a(n) = a(n-11).
G.f. -x^2*(1+x^3+x^6+x^8) / ( (x-1)*(1+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x) ). - R. J. Mathar, Jul 09 2013