cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A096270 Fixed point of the morphism 0->01, 1->011.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2004

Keywords

Comments

This is another version of the Fibonacci word A005614.
(With offset 1) for k>0, a(ceiling(k*phi^2))=0 and a(floor(k*phi^2))=1 where phi=(1+sqrt(5))/2 is the Golden ratio. - Benoit Cloitre, Apr 01 2006
(With offset 1) for n>1 a(A000045(n)) = (1-(-1)^n)/2.
Equals the Fibonacci word A005614 with an initial zero.
Also the Sturmian word of slope phi (cf. A144595). - N. J. A. Sloane, Jan 13 2009
More precisely: (a(n)) is the inhomogeneous Sturmian word of slope phi-1 and intercept 0: a(n) = floor((n+1)*(phi-1)) - floor(n*(phi-1)), n >= 0. - Michel Dekking, May 21 2018
The ratio of number of 1's to number of 0's tends to the golden ratio (1+sqrt(5))/2 = 1.618... - Zak Seidov, Feb 15 2012

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

Crossrefs

Cf. A003849, A096268, A001519. See A005614, A114986 for other versions.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [-1+Floor(n*(1+Sqrt(5))/2)-Floor((n-1)*(1+Sqrt(5))/2): n in [1..100]]; // Wesley Ivan Hurt, Aug 29 2022
  • Mathematica
    Nest[ Function[l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {0, 1, 1}})]}], {0}, 6] (* Robert G. Wilson v, Feb 04 2005 *)
  • PARI
    a(n)=-1+floor(n*(1+sqrt(5))/2)-floor((n-1)*(1+sqrt(5))/2) \\ Benoit Cloitre, Apr 01 2006
    
  • Python
    from math import isqrt
    def A096270(n): return (n+1+isqrt(5*(n+1)**2)>>1)-(n+isqrt(5*n**2)>>1)>>1 # Chai Wah Wu, Aug 29 2022
    

Formula

Conjecture: a(n) is given recursively by a(1)=0 and, for n>1, by a(n)=1 if n=F(2k+1) and a(n)=a(n-F(2k+1)) otherwise, where F(2k+1) is the largest odd-indexed Fibonacci number smaller than or equal to n. (This has been confirmed for more than nine million terms.) The odd-indexed bisection of the Fibonacci numbers (A001519) is {1, 2, 5, 13, 34, 89, ...}. So by the conjecture, we would expect that a(30) = a(30-13) = a(17) = a(17-13) = a(4) = a(4-2) = a(2) = 1, which is in fact correct. - John W. Layman, Jun 29 2004
From Michel Dekking, Apr 13 2016: (Start)
Proof of the above conjecture:
Let g be the morphism above: g(0)=01, g(1)=011. Then g^n(0) has length F(2n+1), and (a(n)) starts with g^n(0) for all n>0. Obviously g^n(0) ends in 1 for all n, proving the first part of the conjecture.
We extend the semigroup of words with letters 0 and 1 to the free group, adding the inverses 0*:=0^{-1} and 1*:=1^{-1}. Easy observation: for any word w one has g(w1)= g(w0)1. We claim that for all n>1 one has g^n(0)=u(n)v(n)v(n)0*1, where u(n)=g(u(n-1))0 and v(n)=0*g(v(n-1))0. The recursion starts with u(2)=0, v(2)=10. Indeed: g^2(0)=01011=u(2)v(2)v(2)0*1. Induction step:
g^{n+1}(0)=g(g^n(0))= g(u(n)v(n)v(n)0*1)= g(u(n)v(n)v(n))1= g(u(n))00*g(v(n))00*g(v(n))00*1=u(n+1)v(n+1)v(n+1)0*1.
Since v(n) has length F(2n-1), which is the largest odd-indexed Fibonacci number smaller than or equal to m for all m between F(2n-1) and F(2n+1), the claim proves the second part of the conjecture. (End)
(With offset 1) a(n) = -1 + floor(n*phi) - floor((n-1)*phi) where phi=(1+sqrt(5))/2 so a(n) = -1 + A082389(n). - Benoit Cloitre, Apr 01 2006

Extensions

More terms from John W. Layman, Jun 29 2004

A144597 Christoffel word of slope 3/7.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

Periodic with period 10: repeat (0, 0, 0, 1, 0, 0, 1, 0, 0, 1). - M. F. Hasler, Oct 07 2016

Crossrefs

See A144595 for further details.
Differs from A125117 from a(102) on.

Programs

A144611 Sturmian word of slope 2-sqrt(2).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

Old name was: Sturmian word of slope 2.
Conjecture: a(n) = floor((n+1)*log(3)/log(2)) - floor(n*log(3)/log(2)) - 1.
This is not true: Let b(n) = floor((n+1)*log(3)/log(2)) - floor(n*log(3)/log(2)) - 1. Then b(40) = 0, whereas a(40) = 1. This is the first term at which a(n) and b(n) disagree. - Danny Rorabaugh, Mar 14 2015
From Benoit Cloitre, Oct 16 2016: (Start)
Let u(n) = n + floor(sqrt(2)*n) (A003151) and v(n) = n + floor(n/sqrt(2)) (A003152) then u,v form a partition of the positive integers and we have, for n >= 1, a(u(n))=0 and a(v(n))=1.
Another way to construct the sequence: merge the sequences x(n) = 2n^2+1 and y(n) = 4n^2 (n >= 1) into an increasing sequence z(n) which then begins: 3,4,9,16,19,33,36,51,64,73 (not in the OEIS). Then for n >= 1, a(n) = z(n) mod 2. (End)
From Michel Dekking, Feb 16 2020: (Start)
This sequence is a Sturmian sequence s(alpha,rho) with slope alpha = 2-sqrt(2), and intercept rho = 0.
In general, one passes from slope alpha to slope 1-alpha by exchanging 0 and 1. It therefore follows from the Comments of A006337 that (a(n+1)) is the unique fixed point of the morphism 0 -> 101, 1 -> 10. (End)

Crossrefs

See A144595 for further details. Cf. A006337, A074840.

Programs

  • Mathematica
    christoffel[s_, M_] := Module[{n, x = 1, y = 0, ans = {0}}, Do[If[y + 1 <= s*x, AppendTo[ans, 1]; y++, AppendTo[ans, 0]; x++], {n, 1, M}]; ans] (* or Sturmian word, Jean-François Alcover, Sep 19 2016, A274170 *); christoffel[Sqrt[2], 105] (* Robert G. Wilson v, Feb 02 2017 *)
  • PARI
    \\ to get N terms
    a(n)=if(n<1,0,vecsort(concat(vector(floor(sqrt(2)*N),i,2*i^2+1),vector(N,j,4*j^2)))[n]%2) \\ Benoit Cloitre, Oct 16 2016
  • Sage
    #Generate the first n terms (plus a few) of the Sturmian word of slope a
    def Sturmian(a,n):
        y = 0
        A = []
        while len(A)<=n:
            y += a
            A.extend([0]+[1]*(floor(y)-floor(y-a)))
        return A
    Sturmian(sqrt(2),104)
    # Danny Rorabaugh, Mar 14 2015
    

Formula

a(n) = floor((n+1)*alpha) - floor(n*alpha), where alpha = 2-sqrt(2). - Michel Dekking, Feb 16 2020

Extensions

Name corrected by Michel Dekking, Feb 16 2020

A274170 Christoffel words as binary numbers.

Original entry on oeis.org

2, 4, 6, 8, 14, 16, 20, 26, 30, 32, 62, 64, 72, 84, 106, 118, 126, 128, 164, 218, 254, 256, 272, 340, 426, 494, 510, 512, 584, 950, 1022, 1024, 1056, 1160, 1316, 1364, 1706, 1754, 1910, 2014, 2046, 2048, 2708, 3434, 4094, 4096, 4160, 4368, 4680, 5284, 5460, 6826, 7002, 7606, 7918, 8126, 8190
Offset: 1

Views

Author

Jamie Simpson, Jun 11 2016

Keywords

Comments

The Christoffel word of slope b/a is defined as follows:
Start at (0,0) in the 2-dimensional integer lattice and move up if possible, otherwise right, always keeping below or on the line y = b*x/a. Write down x for a horizontal move and y for a vertical move. The first move is necessarily horizontal, so the sequence always begins with x. Stop when you get to (a,b). The word then has length a+b and contains a copies of x and b of y (see Berstel et al., p. 6, Fig. 2). The symbols x and y are arbitrary: we replace x with 1 and y with 0 and treat the resulting word as a binary number. The sequence is in increasing order of decimal equivalents. The Christoffel word with least decimal equivalent is 10 with decimal equivalent 2.

Examples

			The Christoffel word of slope 4/7 is xxyxxyxxyxy which becomes 11011011010 with decimal equivalent 1754.
		

References

  • J. Berstel et al., Combinatorics on Words: Christoffel Words and Repetitions in Words, Amer. Math. Soc., 2008.

Crossrefs

Cf. A144595-A144602 (with slightly different definition of Christoffel word).

Programs

  • Maple
    christoffel := proc (a, b) local n, x, y, ans; x := 1; y := 0; ans := 2^(a+b-1); for n to a+b-1 do if y+1 <= a*x/b then y := y+1 else ans := ans+2^(a+b-n-1); x := x+1 end if end do; ans end proc;
    for n from 2 to 12 do for b to n-1 do a := n-b; if gcd(a, n) = 1 then printf("%4d, ", christoffel(a, b)) end if end do end do

A144596 Christoffel word of slope 2/7.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

The path is on the slope after 0, 9, 18, 27, 36 ,.... (A008591) steps, which gives the C-finite recurrence.

Crossrefs

See A144595 for further details.

Formula

a(n) = a(n-9). - R. J. Mathar, May 28 2025
G.f.: -x^4*(1+x^4) / ( (x-1)*(1+x+x^2)*(x^6+x^3+1) ). - R. J. Mathar, May 28 2025

A144602 Christoffel word of slope 4/11.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

The path is on the slope after 0, 15, 30, 45, 60, 75,... (A008597) steps, which gives a simple C-finite recurrence. - R. J. Mathar, May 28 2025

Crossrefs

See A144595 for further details.

Formula

a(n) = a(n-15). - R. J. Mathar, May 28 2025
G.f.: -x^3*(1+x^4+x^8+x^11) / ( (x-1)*(1+x^4+x^3+x^2+x)*(1+x+x^2)*(1-x+x^3-x^4+x^5-x^7+x^8) ). - R. J. Mathar, May 28 2025

A144608 Christoffel word of slope 10/11.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

The path is on the slope after 0, 21, 42, 63, 84,... steps (A008603), which gives the simple C-finite recurrence. - R. J. Mathar, May 28 2025

Crossrefs

See A144595 for further details.

Formula

a(n) = a(n-21). - R. J. Mathar, May 28 2025
G.f.: -x^2*(1+x^2)*(x^8-x^6+x^4-x^2+1)*(x^4-x^3+x^2-x+1)*(1+x+x^2+x^3+x^4) / ( (x-1)*(1+x^6+x^5+x^4+x^3+x^2+x)*(1+x+x^2)*(1-x+x^3-x^4+x^6-x^8+x^9-x^11+x^12) ). - R. J. Mathar, May 28 2025

A144609 Sturmian word of slope Pi.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

A063438 seems to contain the run lengths of 1's. - R. J. Mathar, May 30 2025

Crossrefs

See A144595 for further details.
Seems to be very similar to A070127. Is this a coincidence?
Cf. A063438, A076539 (partial sums).

Programs

  • Maple
    Digits := 500 :
    x :=1 ;
    y :=0 ;
    slop := Pi ;
    printf("0,") ;
    for n from 1 to 300 do
        if evalf((y+1)/x-slop) > 0 then
            x := x+1 ;
            printf("0,") ;
        else
            y := y+1 ;
            printf("1,") ;
        end if;
    end do: # R. J. Mathar, May 30 2025
  • Mathematica
    christoffel[s_, M_] := Module[{n, x = 1, y = 0, ans = {0}}, Do[ If[y + 1 <= s*x, AppendTo[ans, 1]; y++, AppendTo[ans, 0]; x++], {n, 1, M}]; ans]; christoffel[Pi, 105] (* Robert G. Wilson v, Feb 02 2017, after Jean-François Alcover, Sep 19 2016, A274170 *)

A144610 Sturmian word of slope e.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Crossrefs

See A144595 for further details.
Cf. A085369. [From R. J. Mathar, Feb 21 2009]

A144598 Christoffel word of slope 5/7.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

The path is on the slope after 0, 12, 24, 36, 48,... (A008594) steps, which gives the C-finite recurrence. - R. J. Mathar, May 28 2025

Crossrefs

See A144595 for further details.

Formula

a(n) = a(n-12). - R. J. Mathar, May 28 2025
G.f.: -x^2*(1+x^2+x^5+x^7+x^9) / ( (x-1)*(1+x+x^2)*(1+x)*(1-x+x^2)*(1+x^2)*(x^4-x^2+1) ). - R. J. Mathar, May 28 2025
Showing 1-10 of 18 results. Next