cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144614 Sum of divisors of 3*n + 1.

Original entry on oeis.org

1, 7, 8, 18, 14, 31, 20, 36, 31, 56, 32, 54, 38, 90, 44, 72, 57, 98, 72, 90, 62, 127, 68, 144, 74, 140, 80, 126, 108, 180, 112, 144, 98, 217, 104, 162, 110, 248, 144, 180, 133, 224, 128, 252, 160, 270, 140, 216, 180, 266, 152, 288, 158, 378, 164, 252, 183, 308
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2009

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 7*x + 8*x^2 + 18*x^3 + 14*x^4 + 31*x^5 + 20*x^6 + 36*x^7 + 31*x^8 + 56*x^9 +...
G.f. = q + 7*q^4 + 8*q^7 + 18*q^10 + 14*q^13 + 31*q^16 + 20*q^19 + 36*q^22 + 31*q^25 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(9), 2), 173)[2]; /* Michael Somos, Jun 10 2015 */
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSigma[1, 3 n + 1]]; (* Michael Somos, May 26 2014 *)
    DivisorSigma[1,3*Range[0,60]+1] (* Harvey P. Dale, Mar 20 2023 *)
  • PARI
    {a(n) = if( n<0, 0, sigma( 3*n + 1))}; /* Michael Somos, May 30 2012 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) * eta(x^3 + A)^2 / eta(x + A), n))}; /* Michael Somos, Jun 09 2012 */
    
  • Sage
    ModularForms( Gamma0(9), 2, prec=70).1; # _Michael Somos, May 26 2014 */
    

Formula

Expansion of q^(-1/3) * a(q) * c(q) / 3 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, May 30 2012
From Michael Somos, Jun 09 2012: (Start)
Expansion of q^(-1/3) * (eta(q)^3 + 9 * eta(q^9)^3) * eta(q^3)^2 / eta(q) in powers of q.
a(n) = A000203(3*n + 1).
Convolution of A004016 and A033687. (End)
Sum_{k=1..n} a(k) = (2*Pi^2/9) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022