A144614 Sum of divisors of 3*n + 1.
1, 7, 8, 18, 14, 31, 20, 36, 31, 56, 32, 54, 38, 90, 44, 72, 57, 98, 72, 90, 62, 127, 68, 144, 74, 140, 80, 126, 108, 180, 112, 144, 98, 217, 104, 162, 110, 248, 144, 180, 133, 224, 128, 252, 160, 270, 140, 216, 180, 266, 152, 288, 158, 378, 164, 252, 183, 308
Offset: 0
Keywords
Examples
G.f. = 1 + 7*x + 8*x^2 + 18*x^3 + 14*x^4 + 31*x^5 + 20*x^6 + 36*x^7 + 31*x^8 + 56*x^9 +... G.f. = q + 7*q^4 + 8*q^7 + 18*q^10 + 14*q^13 + 31*q^16 + 20*q^19 + 36*q^22 + 31*q^25 + ...
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Magma
Basis( ModularForms( Gamma0(9), 2), 173)[2]; /* Michael Somos, Jun 10 2015 */
-
Mathematica
a[ n_] := If[ n < 0, 0, DivisorSigma[1, 3 n + 1]]; (* Michael Somos, May 26 2014 *) DivisorSigma[1,3*Range[0,60]+1] (* Harvey P. Dale, Mar 20 2023 *)
-
PARI
{a(n) = if( n<0, 0, sigma( 3*n + 1))}; /* Michael Somos, May 30 2012 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) * eta(x^3 + A)^2 / eta(x + A), n))}; /* Michael Somos, Jun 09 2012 */
-
Sage
ModularForms( Gamma0(9), 2, prec=70).1; # _Michael Somos, May 26 2014 */
Formula
Expansion of q^(-1/3) * a(q) * c(q) / 3 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, May 30 2012
From Michael Somos, Jun 09 2012: (Start)
Expansion of q^(-1/3) * (eta(q)^3 + 9 * eta(q^9)^3) * eta(q^3)^2 / eta(q) in powers of q.
a(n) = A000203(3*n + 1).
Sum_{k=1..n} a(k) = (2*Pi^2/9) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
Comments