cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144631 Second diagonal (or column) of A144630.

Original entry on oeis.org

4, 12, 880, 46900, 1615824, 45094896, 1115345088, 25519125060, 553014576400, 11514200107696, 232490008680384, 4581732884262352, 88532684825838400, 1683073282734360000, 31561148509363526400, 584964180982546208100
Offset: 2

Views

Author

Daniel McLaury and Ben Golub, Jan 20 2009

Keywords

Programs

  • Magma
    [ [ &+[I[i][j]: i, j in [k..n] ]: k in [n..1 by -1] ][2] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [2..17] ]; // Klaus Brockhaus, Jan 22 2009
  • Maple
    invH := proc(n,i,j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1,n-j)*binomial(n+j-1,n-i)* (binomial(i+j-2,i-1))^2 ; end: A144630 := proc(n,k) local T,i,j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n,i,j) ; od; od; RETURN(T) ; end: A144631 := proc(n) A144630(n+1,2) ; end: for n from 1 to 20 do printf("%a,",A144631(n)) : od: # R. J. Mathar, Jan 21 2009

Extensions

More terms from R. J. Mathar and Klaus Brockhaus, Jan 21 2009

A144632 Row sums in A144630.

Original entry on oeis.org

1, 16, 201, 3736, 95545, 2738856, 82152385, 2526574240, 78991868961, 2498812448320, 79748142780361, 2562704059745688, 82808387862053113, 2687915950092986536, 87578455481326007745, 2862650767821013111936
Offset: 1

Views

Author

N. J. A. Sloane, Jan 20 2009

Keywords

Programs

  • Magma
    [ &+[ &+[I[i][j]: i, j in [k..n] ]: k in [n..1 by -1] ] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [1..16] ]; // Klaus Brockhaus, Jan 21 2009
  • Maple
    invH := proc(n,i,j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1,n-j)*binomial(n+j-1,n-i)* (binomial(i+j-2,i-1))^2 ; end: A144630 := proc(n,k) local T,i,j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n,i,j) ; od; od; RETURN(T) ; end: A144632 := proc(n) local k; add(A144630(n,k),k=1..n) ; end: for n from 1 to 30 do printf("%a,",A144632(n)) : od: # R. J. Mathar, Jan 21 2009
  • Mathematica
    a = DifferenceRoot[Function[{y, n}, {-13632 n^5 - 136320 n^4 - 540336 n^3 - 1060896 n^2 + (-1728 n^5 - 16484 n^4 - 60648 n^3 - 106194 n^2 - 86888 n - 25970) y[n+1] + (3360 n^5 + 33600 n^4 + 154334 n^3 + 388404 n^2 + 503246 n + 257468) y[n+2] + (-1728 n^5 - 18076 n^4 - 73384 n^3 - 145038 n^2 - 140376 n - 53518) y[n+3] + (n+1)^2 (n+2)(2n + 5)(24 n + 61) y[n] + (n + 2)(n + 3)^2 (2n + 3)(24n + 35) y[n+4] - 1031616 n - 397440 == 0, y[1] == 1, y[2] == 16, y[3] == 201, y[4] == 3736}]];
    Array[a, 30] (* Jean-François Alcover, Mar 31 2020 *)

Formula

Recurrence: (n-2)*(n-1)^2*(2*n-7)*(2*n-5)*(6*n^4 - 60*n^3 + 220*n^2 - 350*n + 203)*a(n) = 2*(2*n-7)*(216*n^8 - 3636*n^7 + 26190*n^6 - 105112*n^5 + 255968*n^4 - 384806*n^3 + 345331*n^2 - 166378*n + 31919)*a(n-1) - 2*(n-2)*(2*n-7)*(2*n-1)*(3*n^2-12*n+11)*(70*n^4 - 560*n^3 + 1524*n^2 - 1616*n + 539)*a(n-2) + 2*(2*n-1)*(216*n^8 - 3276*n^7 + 21150*n^6 - 75896*n^5 + 165408*n^4 - 223706*n^3 + 182571*n^2 - 81550*n + 15031)*a(n-3) - (n-2)*(2*n-3)*(2*n-1)*(6*n^4 - 36*n^3 + 76*n^2 - 66*n + 19)*(n-3)^2*a(n-4). - Vaclav Kotesovec, Aug 07 2013
a(n) ~ 2^(1/4)*(17+12*sqrt(2))^n/(64*Pi^(3/2)*sqrt(n)). - Vaclav Kotesovec, Aug 07 2013

Extensions

Extended by Klaus Brockhaus and R. J. Mathar, Jan 21 2009
Showing 1-2 of 2 results.