cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A144630 Triangle read by rows: T(n,k) (1 <= k <= n) is the sum of the entries in the lower right k X k submatrix of the n X n inverse Hilbert matrix.

Original entry on oeis.org

1, 12, 4, 180, 12, 9, 2800, 880, 40, 16, 44100, 46900, 4480, 40, 25, 698544, 1615824, 411264, 13104, 84, 36, 11099088, 45094896, 23653476, 2268756, 36036, 84, 49, 176679360, 1115345088, 1017615456, 207193536, 9660816, 79776, 144, 64
Offset: 1

Views

Author

Daniel McLaury and Ben Golub, Dec 23 2008

Keywords

Comments

The initial entries in each row form A000515. The second entries give A144631. The final entries are the squares (A000290).
Row sums are A144632. The penultimate entries in each row appear to be 4*A014105. - N. J. A. Sloane, Jan 20 2009

Examples

			The first three inverse Hilbert matrices are:
--------------
[ 1 ]
--------------
[4 -6 ]
[-6 12]
--------------
[ 9 -36 30 ]
[-36 192 -180]
[30 -180 180]
--------------
Triangle begins:
1,
12, 4,
180, 12, 9,
2800, 880, 40, 16,
44100, 46900, 4480, 40, 25,
698544, 1615824, 411264, 13104, 84, 36
		

Crossrefs

Programs

  • MATLAB
    invhilb(1), invhilb(2), invhilb(3), etc.
    
  • Magma
    &cat[ [ &+[I[i][j]: i,j in [k..n] ]: k in [n..1 by -1] ] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [1..8] ]; // Klaus Brockhaus, Jan 21 2009
  • Maple
    invH := proc(n,i,j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1,n-j)*binomial(n+j-1,n-i)* (binomial(i+j-2,i-1))^2 ; end: A144630 := proc(n,k) local T,i,j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n,i,j) ; od; od; RETURN(T) ; end: for n from 1 to 10 do for k from 1 to n do printf("%a,", A144630(n,k)) : od: od: # R. J. Mathar, Jan 21 2009
  • Mathematica
    inverseHilbert[n_, i_, j_] := (-1)^(i+j)*(i+j-1) * Binomial[n+i-1, n-j] * Binomial[n+j-1, n-i] * Binomial[i+j-2, i-1]^2; inverseHilbert[n_, k_] := Table[ inverseHilbert[n, i, j], {i, n-k+1, n}, {j, n-k+1, n}]; t[n_, k_] := Tr[ Flatten[ inverseHilbert[n, k]]]; Flatten[ Table[t[n, k], {n, 1, 8}, {k, 1, n}]] (* Jean-François Alcover, Jul 16 2012 *)

Extensions

More terms from R. J. Mathar and Klaus Brockhaus, Jan 21 2009
Showing 1-1 of 1 results.