A144640 Row sums from A144562.
3, 17, 48, 102, 185, 303, 462, 668, 927, 1245, 1628, 2082, 2613, 3227, 3930, 4728, 5627, 6633, 7752, 8990, 10353, 11847, 13478, 15252, 17175, 19253, 21492, 23898, 26477, 29235, 32178, 35312, 38643, 42177, 45920, 49878, 54057, 58463, 63102, 67980, 73103
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[3, 17, 48, 102]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +4*Self(n-3) -Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 06 2012
-
Maple
A144640:= n-> n*(2*n^2 +5*n -1)/2; seq(A144640(n), n=1..40); # G. C. Greubel, Mar 01 2021
-
Mathematica
CoefficientList[Series[(3+5*x-2*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 06 2012 *)
-
Sage
[n*(2*n^2 +5*n -1)/2 for n in (1..40)] # G. C. Greubel, Mar 01 2021
Formula
a(n) = n*(2*n^2 + 5*n - 1)/2. - Jon E. Schoenfield, Jun 24 2010
G.f.: x*(3+5*x-2*x^2)/(1-x)^4. - Vincenzo Librandi, Jul 06 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 06 2012
E.g.f.: x*(6 + 11*x + 2*x^2)*exp(x)/2. - G. C. Greubel, Mar 01 2021
Comments