cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144647 Second differences of A001515 (or A144301).

Original entry on oeis.org

1, 4, 25, 199, 1936, 22411, 301939, 4649800, 80654599, 1556992441, 33120019516, 769887934729, 19419368959225, 528311452144204, 15421347559288441, 480784227676809991, 15945180393017896024, 560549114426134288675
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2009

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else ( ((2*n-3)*(4*n^2-12*n+13))*Self(n-1) + (4*n^2-8*n+7)*Self(n-2) )/(4*n^2-16*n+19): n in [1..30]]; // G. C. Greubel, Sep 28 2023
    
  • Maple
    A001515 := proc(n) simplify(hypergeom([n+1,-n],[],-1/2)) ; end: A144647 := proc(n) if n =0 then A001515(n) ; else A001515(n+1)-2*A001515(n)+A001515(n-1) ; fi; end: seq(A144647(n),n=0..30) ; # R. J. Mathar, Feb 01 2009
  • Mathematica
    Join[{1},Differences[RecurrenceTable[{a[0]==1,a[1]==2,a[n]== (2n-1)a[n-1]+ a[n-2]},a[n],{n,25}],2]] (* Harvey P. Dale, Jun 18 2011 *)
  • SageMath
    def A144647_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (-1+4*x+2*(1-x)*sqrt(1-2*x))*exp(1-sqrt(1-2*x))/(sqrt(1-2*x))^3 ).egf_to_ogf().list()
    A144647_list(40) # G. C. Greubel, Sep 28 2023

Formula

G.f.: (1-x)^2/(x*Q(0)) + 1 - 1/x, where Q(k)= 1 - x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: T(0)*(1-x)/x + 1 - 1/x, where T(k) = 1 - x*(k+1)/( x*(k+1) - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2013
From G. C. Greubel, Sep 28 2023: (Start)
a(n) = A001515(n+1) - 2*A001515(n) + A001515(n).
a(n) = 2*A001515(n+1) - (2*n+3)*A001515(n).
a(n) = ( ((2*n-1)*(4*n^2 - 4*n + 5))*a(n-1) + (4*n^2 + 3)*a(n-2) )/(4*n^2 - 8*n + 7), with a(0) = 1, a(1) = 4.
E.g.f.: (-1 + 4*x + 2*(1-x)*sqrt(1-2*x))*exp(1-sqrt(1-2*x))/(sqrt(1-2*x))^3. (End)

Extensions

More terms from R. J. Mathar, Feb 01 2009