cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144649 Second bisection of A134772.

Original entry on oeis.org

0, 14400, 134289792000, 29865588836219136000, 64007711015400701105356800000, 799901135455942846519287494400000000000, 42346525471797343063631567858734790430720000000000, 7611746717262781749937067971966455935937523732684800000000000, 3949387898792061570875758855816554982971495343701121923966566400000000000
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2009

Keywords

Crossrefs

Cf. A134772.

Programs

  • Magma
    B:=Binomial; F:=Factorial;
    A134772:= func< n | F(4*n)/(24)^n *(&+[B(n, j)*B(2*n, j)*(-6)^j/(F(j)*B(2*j, j)*B(4*n, 2*j)) : j in [0..n]]) >;
    A144649:= func< n | A134772(2*n+1) >;
    [A144649(n): n in [0..20]]; // G. C. Greubel, Oct 13 2023
    
  • Mathematica
    A134772[n_]:= ((4*n)!/(24)^n)*Hypergeometric1F1[-n,1/2-2*n,-3/2];
    A144549[n_]:= A134772[2*n+1];
    Table[A144549[n], {n,0,20}] (* G. C. Greubel, Oct 13 2023 *)
  • SageMath
    def A134772(n): return (factorial(4*n)/(24)^n)* simplify(hypergeometric([-n], [1/2-2*n], -3/2))
    def A144649(n): return A134772(2*n+1)
    [A144649(n) for n in range(21)] # G. C. Greubel, Oct 13 2023

Formula

a(n) = A134772(2*n+1). - G. C. Greubel, Oct 13 2023
a(n) ~ sqrt(Pi) * 2^(18*n + 11) * n^(8*n + 9/2) / (3^(2*n+1) * exp(8*n + 3/4)). - Vaclav Kotesovec, Oct 21 2023