cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144663 Decimal expansion of Product_{n>=2} (n^4-1)/(n^4+1).

Original entry on oeis.org

8, 4, 8, 0, 5, 4, 0, 4, 9, 3, 5, 2, 9, 0, 0, 3, 9, 2, 1, 2, 9, 6, 5, 0, 1, 8, 3, 4, 0, 5, 0, 0, 7, 7, 0, 5, 8, 4, 7, 9, 8, 7, 4, 8, 6, 8, 8, 4, 7, 1, 7, 6, 6, 6, 4, 3, 0, 6, 9, 6, 4, 5, 3, 8, 0, 6, 6, 1, 3, 5, 7, 2, 8, 5, 5, 5, 5, 4, 4, 1, 2, 7, 1, 3, 6, 7, 6, 6, 3, 7, 6, 7, 3, 6, 9, 0, 1, 2, 5, 2, 9, 5, 8, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.8480540493529003921296501834...
		

Crossrefs

Programs

  • Maple
    Digits := 120 :
    m := 1:
    for r from 2 to 10 do
    omega := cos(Pi/r)+I*sin(Pi/r) :
    x := (-1)^(m+1)*2*m*m!/r*mul( GAMMA(-m*omega^j)^(-(-1)^j),j=1..2*r-1) ;
    x := Re(evalf(x)) ;
    print(r,x) ;
    od:
  • Mathematica
    RealDigits[ -1/2*Pi*Csc[(-1)^(1/4)*Pi]*Csc[(-1)^(3/4)*Pi]*Sinh[Pi] // Re, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
    RealDigits[Re[N[Product[(n^4 - 1)/(n^4 + 1), {n, 2, Infinity}], 110]]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    Pi*sinh(Pi)/(cosh(Pi*sqrt(2))-cos(Pi*sqrt(2))) \\ Michel Marcus, Sep 07 2020

Formula

Equals Pi*sinh(Pi) / (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Vaclav Kotesovec, Dec 08 2015

Extensions

More terms from Jean-François Alcover, Feb 11 2013