A369614
Maximal size of Condorcet domain on n alternatives.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 45, 100, 224
Offset: 0
For n <= 2, the set of all n! permutations is a Condorcet domain.
For n = 3, an example of a Condorcet domain of maximal size is the following set of permutations:
123
213
231
321
For n = 4, an example of a Condorcet domain of maximal size is:
1234
1324
1342
3124
3142
3412
3421
4312
4321
- Dolica Akello-Egwell, Charles Leedham-Green, Alastair Litterick, Klas Markström and Søren Riis, Condorcet Domains of Degree at most Seven, arXiv:2306.15993 [cs.DM], 2023. See the website presenting all maximal unitary Condorcet domains on 4, 5, 6, 7 alternatives.
- Clemens Puppe and Arkadii Slinko, Maximal Condorcet domains: A further progress report, KIT Working Paper Series in Economics, 159 (2022).
- Charles Leedham-Green, Klas Markström and Søren Riis, The largest Condorcet domain on 8 alternatives, Soc. Choice Welf., 62 (2024), 109-116.
- Bernard Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160; preprint: halshs-00198635.
- Wikipedia, Condorcet paradox.
Cf.
A144685 (size of Fishburn's alternating domain),
A144686 (maximal size of Condorcet domain containing a maximal chain),
A144687,
A289684.
A144686
Maximal size of a connected acyclic domain of permutations of n elements with diameter n*(n-1)/2.
Original entry on oeis.org
1, 2, 4, 9, 20, 45, 100
Offset: 1
- B. Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160.
- James Abello, The Weak Bruhat Order of S_Sigma, Consistent Sets, and Catalan Numbers, SIAM Journal on Discrete Mathematics, 4 (1991), 1-16; alternative link.
- James Abello, The Majority Rule and Combinatorial Geometry (via the Symmetric Group), Annales Du Lamsade, 3 (2004), 1-13.
- Vladimir I. Danilov, Alexander V. Karzanov, and Gleb Koshevoy, Condorcet domains of tiling type, Discrete Applied Mathematics 160.7-8 (2012), pages 933-940.
- Stefan Felsner and Pavel Valtr, Coding and counting arrangements of pseudolines, Discrete & Computational Geometry 46.3 (2011), pages 405-416.
- Alexander Karpov and Arkadii Slinko, Constructing large peak-pit Condorcet domains, Theory and Decision, 94 (2023), 97-120.
- B. Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160 ⟨halshs-00198635⟩.
Showing 1-2 of 2 results.
Comments