A144694 Initial terms from the linear congruential pseudorandom number generator defined by the recurrence a(n + 1) = a(n) * 7202161 + 1234567 (modulo 277945762500) with a(0) = 0.
0, 1234567, 275232896354, 254512755561, 100356676888, 52443177035, 94402644702, 182170448089, 160360104896, 160787264823, 53709154570, 135639047837, 234571597824, 250315882231, 144609285758, 175142970105, 222009343972, 112485333059, 70607625066, 140050302193
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- George Marsaglia, Xorshift RNGs, Journal of Statistical Software, Vol. 8, Issue 14, Jul 2003.
- Kevin Ryde, PARI/GP Code
- Richard Simard, TestU01: Empirical Testing of Random Number Generators
- John Walker, ENT: A Pseudorandom Number Sequence Test Program
- Index entries for sequences related to pseudo-random numbers.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, irem(7202161 *a(n-1) +1234567, 277945762500)) end: seq(a(n), n=0..30); # Alois P. Heinz, Jun 10 2014
-
Mathematica
NestList[Mod[#*7202161 + 1234567, 277945762500] &, 0, 20] (* Paolo Xausa, Nov 13 2024 *)
-
PARI
\\ See links.
Formula
a(n+1) = a(n) * 7202161 + c (modulo 277945762500) where c > 0 and gcd(c,277945762500) = 1, with a(0) a nonnegative integer.
Comments