A144697 Triangle of 3-Eulerian numbers.
1, 1, 3, 1, 10, 9, 1, 25, 67, 27, 1, 56, 326, 376, 81, 1, 119, 1314, 3134, 1909, 243, 1, 246, 4775, 20420, 25215, 9094, 729, 1, 501, 16293, 115105, 248595, 180639, 41479, 2187, 1, 1012, 53388, 590764, 2048710, 2575404, 1193548, 183412, 6561
Offset: 3
Examples
Triangle begins ================================================= n\k|..0......1......2......3......4......5......6 ================================================= 3..|..1 4..|..1......3 5..|..1.....10......9 6..|..1.....25.....67.....27 7..|..1.....56....326....376.....81 8..|..1....119...1314...3134...1909....243 9..|..1....246...4775..20420..25215...9094....729 ... T(5,1) = 10: We represent a permutation p:[n-3] -> [n] in Permute(n,n-3) by its image vector (p(1),...,p(n-3)). The 10 permutations in Permute(5,2) having 1 excedance are (1,3), (1,4), (1,5), (3,2), (4,2), (5,2), (2,1), (3,1), (4,1) and (5,1).
References
- R. Strosser, Séminaire de théorie combinatoire, I.R.M.A., Universite de Strasbourg, 1969-1970.
Links
- G. C. Greubel, Rows n = 3..53 of the triangle, flattened
- J. F. Barbero G., J. Salas, and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624 [math.CO], 2013-2015.
- Mark Conger, A refinement of the Eulerian polynomials and the joint distribution of pi(1) and Des(pi) in S_n, arXiv:math/0508112 [math.CO], 2005.
- Ming-Jian Ding and Bao-Xuan Zhu, Some results related to Hurwitz stability of combinatorial polynomials, Advances in Applied Mathematics, Volume 152, (2024), 102591. See p. 9.
- Sergi Elizalde, Descents on quasi-Stirling permutations, arXiv:2002.00985 [math.CO], 2020.
- D. Foata and M. Schutzenberger, Théorie Géométrique des Polynômes Eulériens, arXiv:math/0508232 [math.CO], 2005; Lecture Notes in Math., no. 138, Springer Verlag, 1970.
- L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207 [math.CO], 2005-2006.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
Crossrefs
Programs
-
Magma
m:=3; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..13]]; // G. C. Greubel, Jun 04 2022
-
Maple
with(combinat): T:= (n,k) -> 1/3!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-2)*(j+2)*(j+3),j = 0..k): for n from 3 to 11 do seq(T(n,k),k = 0..n-3) end do;
-
Mathematica
T[n_, k_] /; 0 < k <= n-3 := T[n, k] = (k+1) T[n-1, k] + (n-k) T[n-1, k-1]; T[, 0] = 1; T[, _] = 0; Table[T[n, k], {n, 3, 11}, {k, 0, n-3}] // Flatten (* Jean-François Alcover, Nov 11 2019 *)
-
SageMath
m=3 # A144697 def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) ) flatten([[T(n,k) for k in (0..n-m)] for n in (m..13)]) # G. C. Greubel, Jun 04 2022
Formula
T(n,k) = (1/3!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-2)*(j+2)*(j+3);
T(n,n-k) = (1/3!)*Sum_{j = 3..k} (-1)^(k-j)*binomial(n+1,k-j)*j^(n-2)*(j-1)*(j-2).
Recurrence relation:
T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) with boundary conditions T(n,0) = 1 for n >= 3, T(3,k) = 0 for k >= 1. Special cases: T(n,n-3) = 3^(n-3); T(n,n-4) = A086443 (n-2).
E.g.f. (with suitable offsets): (1/3)*((1 - x)/(1 - x*exp(t - t*x)))^3 = 1/3 + x*t + (x + 3*x^2)*t^2/2! + (x + 10*x^2 + 9*x^3)*t^3/3! + ... .
The row generating polynomials R_n(x) satisfy the recurrence R_(n+1)(x) = (n*x+1)*R_n(x) + x*(1-x)*d/dx(R_n(x)) with R_3(x) = 1. It follows that the polynomials R_n(x) for n >= 4 have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
The (n+2)-th row generating polynomial = (1/3!)*Sum_{k = 1..n} (k+2)!*Stirling2(n,k)*x^(k-1)*(1-x)^(n-k).
For n >= 3,
(1/3)*(x*d/dx)^(n-2) (1/(1-x)^3) = (x/(1-x)^(n+1)) * Sum_{k = 0..n-3} T(n,k)*x^k,
(1/3)*(x*d/dx)^(n-2) (x^3/(1-x)^3) = (1/(1-x)^(n+1)) * Sum_{k = 3..n} T(n,n-k)*x^k,
(1/(1-x)^(n+1)) * Sum_{k = 0..n-3} T(n,k)*x^k = (1/3!) * Sum_{m >= 0} (m+1)^(n-2)*(m+2)*(m+3)*x^m,
(1/(1-x)^(n+1)) * Sum_{k = 3..n} T(n,n-k)*x^k = (1/3!) * Sum_{m >= 3} m^(n-2)*(m-1)*(m-2)*x^m.
Worpitzky-type identities:
Sum_{k = 0..n-3} T(n,k)* binomial(x+k,n) = (1/3!)*x^(n-2)*(x-1)*(x-2);
Sum_{k = 3..n} T(n,n-k)* binomial(x+k,n) = (1/3!)*(x+1)^(n-2)*(x+2)*(x+3).
Relation with Stirling numbers (Frobenius-type identities):
T(n+2,k-1) = (1/3!) * Sum_{j = 0..k} (-1)^(k-j)* (j+2)!* binomial(n-j,k-j)*Stirling2(n,j) for n,k >= 1;
T(n+2,k-1) = (1/3!) * Sum_{j = 0..n-k} (-1)^(n-k-j)* (j+2)!* binomial(n-j,k)*S(3;n+3,j+3) for n,k >= 1 and
T(n+3,k) = (1/3!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+3)!* binomial(n-j,k)*S(3;n+3,j+3) for n,k >= 0, where S(3;n,k) denotes the 3-Stirling numbers A143495(n,k).
The row polynomials of this array are related to the 2-Eulerian polynomials (see A144696). For example, (1/3)*x*d/dx (x^3*(1 + 7*x + 4*x^2)/(1-x)^5) = x^3*(1 + 10*x + 9*x^2)/(1-x)^6 and (1/3)*x*d/dx (x^3*(1 + 18*x + 33*x^2 + 8*x^3)/(1-x)^6) = x^3*(1 + 25*x + 67*x^2 + 27*x^3)/(1-x)^7.
For n >=3, the shifted row polynomial t*R(n,t) = (1/3)*D^(n-2)(f(x,t)) evaluated at x = 0, where D is the operator (1-t)*(1+x)*d/dx and f(x,t) = (1+x*t/(t-1))^(-3). - Peter Bala, Apr 22 2012
Comments