A144779 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 5.
5, 21, 421, 176821, 31265489221, 977530816197201697621, 955566496615167328821993756200407115362021, 913107329453384594090655605142589591944556891901674138343716072975722193082773842421
Offset: 1
Keywords
Examples
a(0) = 4, a(1) = 4+1 = 5, a(2) = 4*5+1 = 21, a(3) = 4*5*21+1 = 421, a(4) = 4*5*21*421+1 = 176821, ... - _Philippe Deléham_, Apr 19 2013
Links
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution, College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
Crossrefs
Programs
-
Mathematica
a = {}; k = 5; Do[AppendTo[a, k]; k = k^2 - k + 1, {n,1,10}]; a (* Artur Jasinski, Sep 21 2008 *) NestList[#^2-#+1&,5,8] (* Harvey P. Dale, Jan 17 2012 *)
Formula
a(n) = round(2.127995907464107054577351...)^(2^n) = round(A144803^(2^n)). [corrected by Joerg Arndt, Jan 15 2021]
a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 5.