A144782 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 9.
9, 73, 5257, 27630793, 763460694178057, 582872231554839914154126117193, 339740038317718918529575265905277902175236102890836244082057
Offset: 1
Keywords
Links
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
Crossrefs
Programs
-
Mathematica
a = {}; r = 9; Do[AppendTo[a, r]; r = r^2 - r + 1, {n, 1, 10}]; a NestList[#^2-#+1&,9,10] (* Harvey P. Dale, Aug 31 2014 *)
Formula
a(n) ~ c^(2^n) with c = 2.918012...
a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 9.