cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144783 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 10.

Original entry on oeis.org

10, 91, 8191, 67084291, 4500302031888391, 20252718378218776104731448680491, 410172601707440572557971589875869064610540321970215293555320591, 168241563191450680898537024308131628447885486994777537422995633998657738457104605412468520116391629012196009150161991233268691
Offset: 1

Views

Author

Artur Jasinski, Sep 21 2008

Keywords

References

  • Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342

Crossrefs

Programs

  • Mathematica
    a = {}; r = 10; Do[AppendTo[a, r]; r = r^2 - r + 1, {n, 1, 10}]; a (* or *)
    Table[Round[3.08435104906918990233569320020272148875011089837398848476442237096569188195734783139337492942278549518507672786196650938869338548385641623^(2^n)], {n, 1, 8}] (* Artur Jasinski *)
    NestList[#^2-#+1&,10,8] (* Harvey P. Dale, May 07 2017 *)

Formula

a(n) = round((3.08435104906918990233569320020272148875011089837398848476442237096569...)^(2^n)) = round(A144807^(2^n)). [corrected by Joerg Arndt, Jan 15 2021]
a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 10.