cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144792 EXP transform of A140585.

Original entry on oeis.org

1, 1, 5, 33, 282, 2938, 36029, 507440, 8058990, 142315830, 2763775025, 58498072273, 1339545500214, 32980132065364, 868417100538399, 24344702489881998, 723694354351500431, 22733368105181643193, 752291980101845144878, 26153153055424960528533
Offset: 0

Views

Author

Thomas Wieder, Sep 21 2008

Keywords

Comments

Stirling transform of A143463.

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat): b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end: c:= proc(n) option remember; `if`(n=0, 1, add((n-1)!/(n-k)!* b(k)* c(n-k), k=1..n)) end: aa:= n-> add(stirling2(n, k) *c(k), k=1..n): a:= proc(n) option remember; `if`(n=0, 1, aa(n)+ add(binomial(n-1, k-1) *aa(k) *a(n-k), k=1..n-1)) end: seq(a(n), n=1..20); # Alois P. Heinz, Oct 10 2008
  • Mathematica
    b[k_] := b[k] = DivisorSum[k, #/#!^(k/#)&]; c[n_] := c[n] = If[n==0, 1, Sum[(n-1)!/(n-k)!*b[k]*c[n-k], {k, 1, n}]]; aa[n_] := Sum[StirlingS2[n, k]*c[k], {k, 1, n}]; a[n_] := a[n] = If[n==0, 1, aa[n] + Sum[Binomial[ n-1, k-1]*aa[k]*a[n-k], {k, 1, n-1}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)

Formula

E.g.f: (1/exp(1)) exp( 1 / prod_{k=1}^{inf} (1 - (exp(x)-1)^k / k!) ).
a(n) = sum_{k=1..n} C(n-1,k-1) A140585(k) a(n-k).
With S2(n,k) as the Stirling number of the second kind we have
a(n) = sum_{k=1..n} A143463(n) S2(n,k).

Extensions

More terms from Alois P. Heinz, Oct 10 2008