cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144816 Denominators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2*k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

Original entry on oeis.org

1, 2, 2, 8, 4, 8, 16, 16, 16, 16, 128, 32, 64, 32, 128, 256, 256, 128, 128, 256, 256, 1024, 512, 1024, 256, 1024, 512, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 4096, 8192, 4096, 16384, 4096, 8192, 4096, 32768, 65536, 65536, 16384, 16384, 32768, 32768, 16384, 16384, 65536, 65536
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2008

Keywords

Examples

			Triangle begins:
    1;
    2,  2;
    8,  4,  8;
   16, 16, 16, 16;
  128, 32, 64, 32, 128;
  ...
		

Crossrefs

See A144815 for more information on T(n,k).
Main diagonal and column k=0 gives A046161.
Column k=1 gives A101926(n-1) = 2^A101925(n-1) = 2^(A005187(n-1)+1).
Cf. A077070.

Programs

  • Maple
    # Function T(n,k) defined in A144815.
    seq(seq(denom(T(n,k)), k=0..n), n=0..10);
  • Mathematica
    row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Denominator, {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 03 2014 *)

A144702 Numerators of triangle S(n,k), n>=0, 0<=k<=ceiling((3n+1)/2): S(n,k) is the coefficient of x^k in polynomial s_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 1, 5, 0, -5, 5, -3, 1, 21, 0, -35, 0, 63, -7, 15, 1, 3, 0, -7, 0, 21, -14, 15, -3, 1, 25, 0, -15, 0, 63, 0, -75, 45, -175, 2, 1, 55, 0, -165, 0, 231, 0, -825, 165, -1925, 22, -105, 1, 455, 0, -715, 0, 3861, 0, -2145, 0, 25025, -143, 12285, -65
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2008

Keywords

Comments

A sigmoidal transfer function sigma_n: R->[0,1] can be defined as sigma_n(x) = 1 if x>1, sigma_n(x) = s_n(x) if x in [0,1] and sigma_n(x) = 1-sigma_n(-x) if x<0.

Examples

			1/2, 1/2, 1/2, 1, -1/2, 1/2, 1, 0, -1, 1/2, 1/2, 5/4, 0, -5/2, 5/2, -3/4, 1/2, 21/16, 0, -35/16, 0, 63/16, -7/2, 15/16, 1/2, 3/2, 0, -7/2, 0, 21/2, -14, 15/2, -3/2 ... = A144702/A144703
As triangle:
1/2   1/2
1/2   1     -1/2
1/2   1      0     -1     1/2
1/2   5/4    0     -5/2   5/2  -3/4
1/2  21/16   0    -35/16  0    63/16   -7/2   15/16
1/2   3/2    0     -7/2   0    21/2   -14     15/2   -3/2
1/2  25/16   0    -15/4   0    63/8     0    -75/4   45/2  -175/16  2
...
		

References

  • A. P. Heinz: Yes, trees may have neurons. In Computer Science in Perspective, R. Klein, H. Six and L. Wegner, Editors Lecture Notes In Computer Science 2598. Springer-Verlag New York, New York, NY, 2003, pages 179-190.

Crossrefs

Denominators of S(n,k): A144703.

Programs

  • Maple
    s:= proc(n) option remember; local t,u,f,i,x; u:= floor(n/2); t:= u+n+1; f:= unapply(simplify(1/2 +sum('cat(a||i) *x^i', 'i'=1..t) -sum('cat(a||(2*i)) *x^(2*i)', 'i'=1..u)), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||i), i=1..t)}), 1/2 +sum('cat(a||i) *x^i', 'i'=1..t) -sum('cat(a||(2*i)) *x^(2*i)', 'i'=1..u)), x); end: seq(seq(numer(coeff(s(n)(x), x,k)), k=0..ceil((3*n+1)/2)), n=0..10);
  • Mathematica
    s[n_] := s[n] = Module[{t, u, f, i, x, a}, u = Floor[n/2]; t = u+n+1; f = Function[x, 1/2+Sum[a[i]*x^i, {i, 1, t}] - Sum[a[2*i]*x^(2i), {i, 1, u}]]; Function[x, 1/2+Sum[a[i]*x^i, {i, 1, t}] - Sum[a[2*i]*x^(2i), {i, 1, u}] /. First @ Solve[{f[1] == 1, Sequence @@ Table[Derivative[i][f][1] == 0, {i, 1, n}]}]]]; Table[Table[Numerator[Coefficient[s[n][x], x, k]], {k, 0, Ceiling[(3*n+1)/2]}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 13 2014, after Maple *)

Formula

See program.
Showing 1-2 of 2 results.