cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144703 Denominators of triangle S(n,k), n>=0, 0<=k<=ceiling((3n+1)/2): S(n,k) is the coefficient of x^k in polynomial s_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

Original entry on oeis.org

2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 4, 1, 2, 2, 4, 2, 16, 1, 16, 1, 16, 2, 16, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 16, 1, 4, 1, 8, 1, 4, 2, 16, 1, 2, 32, 1, 32, 1, 16, 1, 16, 2, 32, 1, 32, 2, 256, 1, 128, 1, 256, 1, 64, 1, 256, 1, 128, 2, 256, 2, 128, 1, 64, 1, 128, 1, 32, 1, 128, 2, 64, 2, 128, 2, 2
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2008

Keywords

Crossrefs

See A144702 for more information on S(n,k).

Programs

  • Maple
    seq(seq(denom(coeff(s(n)(x), x, k)), k=0..ceil((3*n+1)/2)), n=0..10);

A144815 Numerators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

Original entry on oeis.org

1, 3, -1, 15, -5, 3, 35, -35, 21, -5, 315, -105, 189, -45, 35, 693, -1155, 693, -495, 385, -63, 3003, -3003, 9009, -2145, 5005, -819, 231, 6435, -15015, 27027, -32175, 25025, -12285, 3465, -429, 109395, -36465, 153153, -109395, 425425, -69615, 58905, -7293, 6435
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2008

Keywords

Comments

All even coefficients of t_n have to be 0, because t_n is defined to be point-symmetric with respect to the origin, with vanishing n-th derivative for x=1.
A sigmoidal transfer function sigma_n: R->[ -1,1] can be defined as sigma_n(x) = 1 if x>1, sigma_n(x) = t_n(x) if x in [ -1,1] and sigma_n(x) = -1 if x<-1.

Examples

			1, 3/2, -1/2, 15/8, -5/4, 3/8, 35/16, -35/16, 21/16, -5/16, 315/128, -105/32, 189/64, -45/32, 35/128, 693/256, -1155/256, 693/128, -495/128, 385/256, -63/256 ... = A144815/A144816
As triangle:
    1;
    3/2,     -1/2;
   15/8,     -5/4,    3/8;
   35/16,   -35/16,  21/16,  -5/16;
  315/128, -105/32, 189/64, -45/32, 35/128;
  ...
		

Crossrefs

Denominators of T(n,k): A144816.
Column k=0 gives A001803.
Diagonal gives (-1)^n A001790(n).

Programs

  • Maple
    t:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); end: T:= (n,k)-> coeff(t(n)(x), x, 2*k+1): seq(seq(numer(T(n,k)), k=0..n), n=0..10);
  • Mathematica
    row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Numerator, {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 03 2014 *)
    Flatten[Table[Numerator[CoefficientList[Hypergeometric2F1[1/2,1-n,3/2,x^2]*(2*n)!/(n!*(n-1)!*2^(2*n-1)),x^2]],{n,1,9}]] (* Eugeniy Sokol, Aug 20 2019 *)

Formula

See program.
Showing 1-2 of 2 results.