A144838 a(n) = Lucas(6^n).
18, 33385282, 1384619022984618483717737087933569992335566082
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..4
Programs
-
Maple
a := proc(n) option remember; if n = 1 then 18 else a(n-1)^6 - 6*a(n-1)^4 + 9*a(n-1)^2 - 2 end if; end; seq(a(n), n = 1..5); # Peter Bala, Nov 28 2022
-
Mathematica
Table[Round[GoldenRatio^(6^n)], {n, 1, 5}] c = (1 + Sqrt[5])/2; Table[Expand[c^(6^n) + (1 - c)^(6^n)], {n, 1, 5}] (* Artur Jasinski, Oct 05 2008 *) Table[Round[2*Cosh[6^n*ArcCosh[Sqrt[5]/2]]], {n, 1, 4}] (* Artur Jasinski, Oct 09 2008 *) Table[LucasL[6^n], {n, 1, 4}] (* Amiram Eldar, Jul 13 2025 *)
Formula
a(n) = G^(6^n) + (1 - G)^(6^n) = G^(6^n) + (-G)^(-6^n) where G is the golden ratio A001622. - Artur Jasinski, Oct 05 2008
a(n) = 2*cosh(6^n*arccosh(sqrt(5)/2)). - Artur Jasinski, Oct 09 2008
From Peter Bala, Nov 28 2022: (Start)
a(n) = Lucas(6^n).
a(n+1) = a(n)^6 - 6*a(n)^4 + 9*a(n)^2 - 2 with a(1) = 18. (End)
Extensions
New name from Peter Bala, Nov 28 2022
Comments