cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144913 Integers which are the product of even powers of primes up to 13.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 324, 400, 441, 484, 576, 625, 676, 729, 784, 900, 1024, 1089, 1225, 1296, 1521, 1600, 1764, 1936, 2025, 2304, 2401, 2500, 2704, 2916, 3025, 3136, 3600, 3969, 4096, 4225, 4356, 4900, 5184, 5625
Offset: 1

Views

Author

Reikku Kulon, Sep 25 2008, Sep 26 2008

Keywords

Crossrefs

Subsequence of A000290 and A080197.
Cf. A001694.

Programs

  • Mathematica
    Select[ Range[75]^2, (fi = FactorInteger[#]; Max[ fi[[All, 1]] ] <= 13 && And @@ EvenQ /@ fi[[All, 2]]) &] (* Jean-François Alcover, Oct 10 2012 *)
    eppQ[n_]:=Module[{fi=FactorInteger[n]},Max[fi[[All,1]]]<=13&&AllTrue[ fi[[All,2]],EvenQ]]; Select[Range[6000],eppQ] (* Harvey P. Dale, Dec 26 2021 *)
  • PARI
    is(n)=if(issquare(n,&n), my(f=factor(n)[,1]); #f && f[#f]<14, 0) \\ Charles R Greathouse IV, Jun 17 2013

Formula

a(n) = A080197(n+1)^2. - Rémy Sigrist, Sep 26 2020
Sum_{n>=1} 1/a(n) = -1 + Product_{primes p <= 13} p^2/(p^2-1) = 273347/442368. - Amiram Eldar, Oct 14 2020