cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144917 a(n) is the maximal odd value attained by A144916(n).

Original entry on oeis.org

1, 3, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331
Offset: 1

Views

Author

Reikku Kulon, Sep 25 2008

Keywords

Comments

Most of these are primes or semiprimes.
Is a(n) = A271114(n-2) for n>=3 ? - R. J. Mathar, Jun 21 2025

Crossrefs

A184635 a(n) = floor(1/{(n+n^4)^(1/4)}), where {} = fractional part.

Original entry on oeis.org

5, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+n)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n], {n, 1, 80}]
    FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{5},LinearRecurrence[{3,-3,1},{16,36,64},45]] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = floor(1/{(n+n^4)^(1/4)}), where {} = fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3) for n>=5, and that a(n)=4*n^2 for n>=2.
Showing 1-2 of 2 results.