cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144944 Super-Catalan triangle (read by rows) = triangular array associated with little Schroeder numbers (read by rows): T(0,0)=1, T(p,q) = T(p,q-1) if 0 < p = q, T(p,q) = T(p,q-1) + T(p-1,q) + T(p-1,q-1) if -1 < p < q and T(p,q) = 0 otherwise.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 5, 11, 11, 1, 7, 23, 45, 45, 1, 9, 39, 107, 197, 197, 1, 11, 59, 205, 509, 903, 903, 1, 13, 83, 347, 1061, 2473, 4279, 4279, 1, 15, 111, 541, 1949, 5483, 12235, 20793, 20793, 1, 17, 143, 795, 3285, 10717, 28435, 61463, 103049, 103049
Offset: 0

Views

Author

Johannes Fischer (Fischer(AT)informatik.uni-tuebingen.de), Sep 26 2008

Keywords

Examples

			First few rows of the triangle:
  1
  1,  1
  1,  3,  3
  1,  5, 11,  11
  1,  7, 23,  45,  45
  1,  9, 39, 107, 197, 197
  1, 11, 59, 205, 509, 903, 903
		

Crossrefs

Super-Catalan numbers or little Schroeder numbers (cf. A001003) appear on the diagonal.
Generalizes the Catalan triangle (A009766) and hence the ballot Numbers.
Cf. A033877 for a similar triangle derived from the large Schroeder numbers (A006318).
Cf. A010683 (row sums), A186826 (rows reversed).

Programs

  • Haskell
    a144944 n k = a144944_tabl !! n !! k
    a144944_row n = a144944_tabl !! n
    a144944_tabl = iterate f [1] where
       f us = vs ++ [last vs] where
         vs = scanl1 (+) $ zipWith (+) us $ [0] ++ us
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    t[, 0]=1; t[p, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q-1] + t[p-1, q] + t[p-1, q-1]; Flatten[Table[ t[p, q], {p,0,6}, {q,0, p}]] (* Jean-François Alcover, Dec 19 2011 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (kG. C. Greubel, Mar 11 2023

Formula

From G. C. Greubel, Mar 11 2023: (Start)
Sum_{k=0..n} T(n, k) = A010683(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A247623(n). (End)