A144959 A134955(n) - A134955(n-1). Number of hyperforests spanning n unlabeled nodes without isolated vertices.
1, 0, 1, 2, 5, 11, 30, 78, 223, 658, 2026, 6429, 21015, 70233, 239360, 829224, 2912947, 10356334, 37205121, 134887153, 493000086, 1814902409, 6724595543, 25061885217, 93899071368, 353514105817, 1336822098961, 5075833932200
Offset: 0
Keywords
Examples
From _Gus Wiseman_, May 21 2018: (Start) Non-isomorphic representatives of the a(5) = 11 hyperforests are the following: {{1,2,3,4,5}} {{1,2},{3,4,5}} {{1,5},{2,3,4,5}} {{1,2,5},{3,4,5}} {{1,2},{2,5},{3,4,5}} {{1,2},{3,5},{4,5}} {{1,4},{2,5},{3,4,5}} {{1,5},{2,5},{3,4,5}} {{1,3},{2,4},{3,5},{4,5}} {{1,4},{2,5},{3,5},{4,5}} {{1,5},{2,5},{3,5},{4,5}} (End)
Crossrefs
Programs
-
Mathematica
etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0] = 0; b[n_] := b[n] = etr[etr[b]][n-1]; c[1] = 0; c[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; a = etr[c]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 12 2018, after Alois P. Heinz's code for A035053 *)
-
PARI
\\ here b is A007563 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v} seq(n)={my(u=b(n)); concat([1], EulerT(concat([0], Vec(Ser(EulerT(u))*(1-x*Ser(u))-1))))} \\ Andrew Howroyd, May 22 2018
Formula
Euler transform of b(1) = 0, b(n > 1) = A035053(n). - Gus Wiseman, May 21 2018
Comments