cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145010 a(n) = area of Pythagorean triangle with hypotenuse p, where p = A002144(n) = n-th prime == 1 (mod 4).

Original entry on oeis.org

6, 30, 60, 210, 210, 180, 630, 330, 1320, 1560, 2340, 990, 2730, 840, 4620, 3570, 5610, 4290, 1710, 7980, 2730, 6630, 10920, 12540, 4080, 8970, 14490, 18480, 9690, 3900, 11550, 25200, 26910, 30600, 34650, 32130, 37050, 7980, 23460, 6090, 29580, 49140, 35700
Offset: 1

Views

Author

M. F. Hasler, Feb 24 2009

Keywords

Comments

Pythagorean primes, i.e., primes of the form p = 4k+1 = A002144(n), have exactly one representation as sum of two squares: A002144(n) = x^2+y^2 = A002330(n+1)^2+A002331(n+1)^2. The corresponding (primitive) integer-sided right triangle with sides { 2xy, |x^2-y^2| } = { A002365(n), A002366(n) } has area xy|x^2-y^2| = a(n). For n>1 this is a(n) = 30*A068386(n).

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
  ---------------------------------
   p  a  b  t_1  c   d t_2 t_3  t_4
  ---------------------------------
   5  1  2   1   3   4   4   3    6
  13  2  3   3   5  12  12   5   30
  17  1  4   2   8  15   8  15   60
  29  2  5   5  20  21  20  21  210
  37  1  6   3  12  35  12  35  210
  41  4  5  10   9  40  40   9  180
  53  2  7   7  28  45  28  45  630
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 500, p = NextPrime[p], If[Mod[p, 4] == 1, area = x*y/2 /. ToRules[Reduce[0 < x <= y && p^2 == x^2 + y^2, {x, y}, Integers]]; Sow[area]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2015 *)
  • PARI
    forprime(p=1,499, p%4==1 | next; t=[p,lift(-sqrt(Mod(-1,p)))]; while(t[1]^2>p,t=[t[2],t[1]%t[2]]); print1(t[1]*t[2]*(t[1]^2-t[2]^2)","))
    
  • PARI
    {Q=Qfb(1,0,1);forprime(p=1,499,p%4==1|next;t=qfbsolve(Q,p); print1(t[1]*t[2]*(t[1]^2-t[2]^2)","))} \\ David Broadhurst

Formula

a(n) = A002365(n)*A002366(n)/2.
a(n) = x*y*(x^2-y^2), where x = A002330(n+1), y = A002331(n+1).