A145010 a(n) = area of Pythagorean triangle with hypotenuse p, where p = A002144(n) = n-th prime == 1 (mod 4).
6, 30, 60, 210, 210, 180, 630, 330, 1320, 1560, 2340, 990, 2730, 840, 4620, 3570, 5610, 4290, 1710, 7980, 2730, 6630, 10920, 12540, 4080, 8970, 14490, 18480, 9690, 3900, 11550, 25200, 26910, 30600, 34650, 32130, 37050, 7980, 23460, 6090, 29580, 49140, 35700
Offset: 1
Keywords
Examples
The following table shows the relationship between several closely related sequences: Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b; a = A002331, b = A002330, t_1 = ab/2 = A070151; p^2 = c^2+d^2 with c < d; c = A002366, d = A002365, t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079, with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2). --------------------------------- p a b t_1 c d t_2 t_3 t_4 --------------------------------- 5 1 2 1 3 4 4 3 6 13 2 3 3 5 12 12 5 30 17 1 4 2 8 15 8 15 60 29 2 5 5 20 21 20 21 210 37 1 6 3 12 35 12 35 210 41 4 5 10 9 40 40 9 180 53 2 7 7 28 45 28 45 630
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Reap[For[p = 2, p < 500, p = NextPrime[p], If[Mod[p, 4] == 1, area = x*y/2 /. ToRules[Reduce[0 < x <= y && p^2 == x^2 + y^2, {x, y}, Integers]]; Sow[area]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2015 *)
-
PARI
forprime(p=1,499, p%4==1 | next; t=[p,lift(-sqrt(Mod(-1,p)))]; while(t[1]^2>p,t=[t[2],t[1]%t[2]]); print1(t[1]*t[2]*(t[1]^2-t[2]^2)","))
-
PARI
{Q=Qfb(1,0,1);forprime(p=1,499,p%4==1|next;t=qfbsolve(Q,p); print1(t[1]*t[2]*(t[1]^2-t[2]^2)","))} \\ David Broadhurst
Comments