A145076 Coefficient of x^(6^n) in Q(x)^(n+1), where Q(x) = Sum_{k>=0} x^(6^k)*(1 - x^(5*6^k))/(1 - x^(6^k)).
1, 5, 25, 270, 3430, 52996, 968905, 20342540, 480982030, 12646108250, 365943140101, 11555148366323, 395323293564108
Offset: 0
Programs
-
Maple
Q:=proc(x,n) options operator, arrow: sum(x^(6^k)+x^(2*6^k)+x^(3*6^k)+x^(4*6^k)+x^(5*6^k),k=0..n) end proc: seq(coeff(Q(x,n)^(n+1),x,6^n),n=0..6); # Emeric Deutsch, Oct 20 2008
-
PARI
{a(n,q=6)=local(Q=sum(j=0,n,(x^(q^j)-x^(q*q^j))/(1-x^(q^j)+O(x^(q^n+1)))));polcoeff(Q^(n+1),q^n)}
Extensions
a(6) from Emeric Deutsch, Oct 20 2008
a(7)-a(12) from Max Alekseyev, Dec 19 2011