A145118 Denominator polynomials for continued fraction generating function for n!.
1, 1, 1, -1, 1, -2, 1, -4, 2, 1, -6, 6, 1, -9, 18, -6, 1, -12, 36, -24, 1, -16, 72, -96, 24, 1, -20, 120, -240, 120, 1, -25, 200, -600, 600, -120, 1, -30, 300, -1200, 1800, -720, 1, -36, 450, -2400, 5400, -4320, 720, 1, -42, 630, -4200, 12600, -15120
Offset: 0
Examples
Triangle begins: 1; 1; 1, -1; 1, -2; 1, -4, 2; 1, -6, 6; 1, -9, 18, -6; 1, -12, 36, -24; 1, -16, 72, -96, 24; 1, -20, 120, -240, 120; 1, -25, 200, -600, 600, -120; 1, -30, 300, -1200, 1800, -720; 1, -36, 450, -2400, 5400, -4320, 720;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
T:= (n, k)-> (-1)^k* binomial(iquo(n+1, 2),k) *binomial(iquo(n, 2), k)*k!: seq (seq (T(n, k), k=0..iquo(n, 2)), n=0..16); # Alois P. Heinz, Dec 04 2012
Formula
T(n,k) = (-1)^k C(floor((n+1)/2),k) * C(floor(n/2),k)*k!.
Comments