cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145118 Denominator polynomials for continued fraction generating function for n!.

Original entry on oeis.org

1, 1, 1, -1, 1, -2, 1, -4, 2, 1, -6, 6, 1, -9, 18, -6, 1, -12, 36, -24, 1, -16, 72, -96, 24, 1, -20, 120, -240, 120, 1, -25, 200, -600, 600, -120, 1, -30, 300, -1200, 1800, -720, 1, -36, 450, -2400, 5400, -4320, 720, 1, -42, 630, -4200, 12600, -15120
Offset: 0

Views

Author

Paul Barry, Oct 02 2008

Keywords

Comments

Row sums are A056920. T(n,1) gives quarter squares A002620. T(n,2) appears to coincide with 2*A000241(n+1).

Examples

			Triangle begins:
1;
1;
1,  -1;
1,  -2;
1,  -4,   2;
1,  -6,   6;
1,  -9,  18,    -6;
1, -12,  36,   -24;
1, -16,  72,   -96,   24;
1, -20, 120,  -240,  120;
1, -25, 200,  -600,  600,  -120;
1, -30, 300, -1200, 1800,  -720;
1, -36, 450, -2400, 5400, -4320, 720;
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> (-1)^k* binomial(iquo(n+1, 2),k) *binomial(iquo(n, 2), k)*k!:
    seq (seq (T(n, k), k=0..iquo(n, 2)), n=0..16);  # Alois P. Heinz, Dec 04 2012

Formula

T(n,k) = (-1)^k C(floor((n+1)/2),k) * C(floor(n/2),k)*k!.