cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A302647 a(n) = (2*n^2*(n^2 - 3) - (2*n^2 + 1)*(-1)^n + 1)/64.

Original entry on oeis.org

0, 0, 2, 6, 18, 36, 72, 120, 200, 300, 450, 630, 882, 1176, 1568, 2016, 2592, 3240, 4050, 4950, 6050, 7260, 8712, 10296, 12168, 14196, 16562, 19110, 22050, 25200, 28800, 32640, 36992, 41616, 46818, 52326, 58482, 64980, 72200, 79800, 88200, 97020, 106722
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 10 2018

Keywords

Comments

Consider the partitions of n into two parts (s,t) where s <= t. Then a(n) represents the total volume of all rectangular prisms with dimensions s, t, and |t-s|.
Take a chessboard of (n+1) X (n+1) unit squares in which the a1 square is black. a(n) is the number of composite rectangles of p X q unit squares whose vertices are covered by white unit squares (1 < p <= n+1, 1 < q <= n+1). For example, in a 4 X 4 chessboard there are two such rectangles (for both rectangles p = q = 3) and the coordinates of their lower left vertices are a2 and b1, i.e., a(3) = 2. For the number of composite rectangles whose vertices are covered by black unit squares see A317714. - Ivan N. Ianakiev, Aug 22 2018
Also the graph crossing number of the (n+2)-barbell graph (assuming Guy's conjecture). - Eric W. Weisstein, May 17 2023

Crossrefs

Positive terms are the third column of the triangle in A145118.

Programs

  • Magma
    [(1/2)*Floor(n/2)*(1+Floor(n/2))*(Floor(n/2)-n)*(1-n+Floor(n/2)): n in [1..45]]; // Vincenzo Librandi, Apr 11 2018
  • Mathematica
    Table[(1/2)*Floor[n/2]*(1 + Floor[n/2])*(Floor[n/2] - n)*(1 - n + Floor[n/2]), {n, 100}]
    LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 2, 6, 18, 36, 72, 120}, 20] (* Eric W. Weisstein, May 17 2023 *)
    Table[(1 - (-1)^n - 2 (3 + (-1)^n) n^2 + 2 n^4)/64, {n, 20}] (* Eric W. Weisstein, May 17 2023 *)
    CoefficientList[Series[-2 x^2 (1 + x + x^2)/((-1 + x)^5 (1 + x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, May 17 2023 *)

Formula

a(n) = Sum_{k=1..floor(n/2)} k * (n-k) * (n-2*k).
a(n) = (1/2)*floor(n/2)*(1+floor(n/2))*(floor(n/2)-n)*(1-n+floor(n/2)).
From Colin Barker, Apr 11 2018: (Start)
G.f.: 2*x^3*(1 + x + x^2) / ((1 - x)^5*(1 + x)^3).
a(n) = n^2*(n-2)*(n+2) / 32 for n even.
a(n) = (n^2 - 1)^2 / 32 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>8. (End)
a(n) = 2 * A028723(n+2). - Alois P. Heinz, Apr 12 2018
a(n) = 2 * binomial(floor((n+1)/2),2) * binomial(floor((n+2)/2),2). - Bruno Berselli, Apr 12 2018
Sum_{n>=3} 1/a(n) = Pi^2/3 - 5/2. - Amiram Eldar, Jun 20 2025
Showing 1-1 of 1 results.