cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145133 Expansion of x/((1 - x - x^4)*(1 - x)^4).

Original entry on oeis.org

0, 1, 5, 15, 35, 71, 132, 231, 386, 622, 974, 1491, 2241, 3318, 4852, 7023, 10080, 14367, 20359, 28712, 40332, 56470, 78853, 109865, 152797, 212192, 294321, 407840, 564697, 781384, 1080665, 1493961, 2064642, 2852571, 3940376, 5442107, 7515185
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Comments

The coefficients of the recursion for a(n) are given by the 5th row of A145152.

Examples

			a(9) = 622 = 5*386 -10*231 +10*132 -4*71 -3*35 +6*15 -4*5 +1.
		

Crossrefs

5th column of A145153. Cf. A145152.

Programs

  • Maple
    col:= proc(k) local l, j, M, n; l:= `if` (k=0, [1, 0, 0, 1], [seq (coeff ( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix (nops(l), (i,j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if` (k=0, n->(M^n)[2,3], n->(M^n)[1,2]) end: a:= col(5): seq (a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x/((1-x-x^4)*(1-x)^4),{x,0,40}],x] (* or *) LinearRecurrence[{5,-10,10,-4,-3,6,-4,1},{0,1,5,15,35,71,132,231},40] (* Harvey P. Dale, Oct 24 2011 *)
  • PARI
    Vec(1/((1 - x - x^4)*(1 - x)^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012

Formula

a(n) = 5a(n-1) -10a(n-2) +10a(n-3) -4a(n-4) -3a(n-5) +6a(n-6) -4a(n-7) +a(n-8).