A145153 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where sequence a_k of column k is the expansion of x/((1 - x - x^4)*(1 - x)^(k - 1)).
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 1, 0, 1, 4, 6, 4, 2, 1, 0, 1, 5, 10, 10, 6, 3, 1, 0, 1, 6, 15, 20, 16, 9, 4, 1, 0, 1, 7, 21, 35, 36, 25, 13, 5, 2, 0, 1, 8, 28, 56, 71, 61, 38, 18, 7, 3, 0, 1, 9, 36, 84, 127, 132, 99, 56, 25, 10, 4, 0, 1, 10, 45, 120, 211, 259, 231, 155, 81, 35, 14, 5
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 1, 3, 6, 10, 15, 21, ... 0, 1, 4, 10, 20, 35, 56, ... 1, 2, 6, 16, 36, 71, 127, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) coeftayl (x/ (1-x-x^4)/ (1-x)^(k-1), x=0, n) end: seq(seq(A(n, d-n), n=0..d), d=0..13);
-
Mathematica
a[n_, k_] := SeriesCoefficient[x/(1 - x - x^4)/(1 - x)^(k - 1), {x, 0, n}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013 *)
Formula
G.f. of column k: x/((1-x-x^4)*(1-x)^(k-1)).
Comments