A145167
G.f. A(x) satisfies A(x/A(x)^6) = 1/(1-x).
Original entry on oeis.org
1, 1, 7, 106, 2349, 65078, 2093770, 75175383, 2941004409, 123442051582, 5500018250128, 258162075155942, 12693904947530988, 651028563908092621, 34708995997762871047, 1918449419812267920842, 109690826250327197055475
Offset: 0
-
{a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A^6);A=1/(1-B));polcoeff(A,n)}
A145169
G.f. A(x) satisfies A(x/A(x)^2) = 1/(1-x)^3.
Original entry on oeis.org
1, 3, 24, 361, 7851, 214245, 6815986, 242659191, 9431036685, 393771017068, 17469277612998, 817033067908275, 40050828368606412, 2048642917085523633, 108968676087557745858, 6010617981960195923285, 343038687551360605111371
Offset: 0
-
{a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A^2);A=1/(1-B)^3);polcoeff(A,n)}
A145170
G.f. A(x) satisfies A(x/A(x)) = 1/(1-x)^6.
Original entry on oeis.org
1, 6, 57, 866, 18444, 492924, 15424611, 542166480, 20861518935, 864061112296, 38081996557383, 1771322835258594, 86425203984341130, 4402953230795279532, 233372023965531945057, 12832558973488295874402, 730347857708249147767893
Offset: 0
-
A[0]:= x -> 1+c*x:
for n from 1 to 20 do
cc:= coeff(series(A[n-1](x/A[n-1](x))-1/(1-x)^6, x, n+1),x,n);
A[n]:= unapply(eval(A[n-1](x),c=solve(cc,c))+c*x^(n+1),x);
od:
seq(coeff(A[20](x),x,j),j=0..20); # Robert Israel, Aug 19 2018
-
nmax = 16; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x/A[x]] - 1/(1 - x)^6 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq] [[1]], {n, 1, nmax}]; sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A);A=1/(1-B)^6);polcoeff(A,n)}
Showing 1-3 of 3 results.