A145184 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=10.
10, 1030, 1092730090, 1304784252725333839617919270, 2221345538213703371536935622204403026741331806706388823688859272519059871168740810
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
a = {}; k = 10; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a or Table[Floor[((10 + Sqrt[104])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)
Formula
a(n+1)=a(n)3+3*a(n) and a(1)=10
a(n)=Floor[((10+Sqrt[10^2+4])/2)^(3^(n-1))]
Comments