cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145215 a(n) is the minimal prime of the form 4k+1 for which s=A008784(n) is the minimal positive integer such that s*a(n)-floor(sqrt(s*a(n)))^2 is a square.

Original entry on oeis.org

5, 41, 353, 1237, 2749, 3037, 10369, 6569, 27253, 38561, 14897, 33289, 27917, 171629, 143513, 76081, 37649, 373273, 399181, 63029, 133157, 637601, 425197, 94261, 499321, 910853, 229849, 149837
Offset: 1

Views

Author

Vladimir Shevelev, Oct 05 2008

Keywords

Comments

See the conjecture in the comment at A145047. In addition, I conjecture that for every such s there exist infinitely many primes of the form 4k+1.

Crossrefs

Programs

  • PARI
    f(s)=forprime(p=2,,if(p%4>1 || !issquare(s*p-sqrtint(s*p)^2),next);for(i=1,s-1,if(issquare(i*p-sqrtint(i*p)^2), next(2)));return(p))
    S=select(n->if(n%2==0, if(n%4, n/=2, return(0))); n==1||vecmax(factor(n)[, 1]%4)==1, vector(150,i,i));
    apply(f, S) \\ Charles R Greathouse IV, Feb 07 2013

Extensions

a(22) corrected by Charles R Greathouse IV, Feb 07 2013