A145230 Numbers of different values of the minimal factors s for primes of the form 4k+1 not exceeding 10^n (see A145215).
1, 2, 3, 7, 17, 38
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A145236 := proc(n) local p,k,a ; p := ithprime(n) ; for k from 1 do ceil(sqrt(ceil(k*p))) ; a := %^2-k*p ; if issqr(a) then return k ; end if; end do: end proc: for n from 1 do printf("%d,\n",A145236(n)) ; end do: # R. J. Mathar, Aug 02 2010
a(10) = 4, for ceiling(sqrt(10))^2-10 = 6, ceiling(sqrt(2*10))^2-2*10 = 5, ceiling(sqrt(3*10))^2-3*10 = 6 and ceiling(sqrt(4*10))^2-4*10 = 9 = 3^2.
dif[n_] := Ceiling[Sqrt[n]]^2 - n;a[k_] := Module[{n = 1}, While[dif[dif[n*k]] != 0, n++]; Return[n]];Table[a[k], {k, 1, 90}]
a(n) = {k=1; while(!issquare(ceil(sqrt(k*n))^2-k*n), k++); k;} \\ Michel Marcus, Oct 24 2014
Comments