A145217 a(n) is the self-convolution series of the sum of 4th powers of the first n natural numbers.
1, 32, 418, 3104, 16003, 64064, 213060, 614976, 1587333, 3742816, 8190182, 16832608, 32795399, 61021312, 109078664, 188234880, 314856201, 512202912, 812698666, 1260762272, 1916300683, 2858972864, 4193345740, 6055075520
Offset: 1
Examples
a(3) = 418 because 1(3^4)+(2^4)(2^4)+(3^4)1= 418
References
- A. Umar, B. Yushau and B. M. Ghandi, (2006), "Patterns in convolution of two series", in Stewart, S. M., Olearski, J. E. and Thompson, D. (Eds), Proceedings of the Second Annual Conference for Middle East Teachers of Science, Mathematics and Computing (pp. 95-101). METSMaC: Abu Dhabi.
- A. Umar, B. Yushau and B. M. Ghandi, "Convolution of two series", Australian Senior Maths. Journal, 21(2) (2007), 6-11.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 2. - _N. J. A. Sloane_, Mar 23 2014
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Magma
[Binomial(n+2,3)*(n*(n+2)*(n^4+4*n^3+8*n^2+8*n+6)+24)/105: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
-
Maple
f:=n->(n^9+20*n^3-21*n)/630; [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
-
Mathematica
CoefficientList[Series[(1 + x)^2 (1 + 10 x + x^2)^2/(1 - x)^10, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,32,418,3104,16003,64064,213060,614976,1587333,3742816},30] (* Harvey P. Dale, May 19 2021 *)
Formula
a(n) = C(n+2,3)*(n*(n+2)*(n^4+4*n^3+8*n^2+8*n+6)+24)/105.
G.f.: x*(1+x)^2*(1+10*x+x^2)^2/(1-x)^10. [Colin Barker, May 25 2012]