A145223 a(n) is the number of odd permutations (of an n-set) with exactly 2 fixed points.
0, 0, 6, 0, 90, 420, 3780, 33264, 333900, 3670920, 44054010, 572697840, 8017775766, 120266628300, 1924266063720, 32712523068960, 588825415259640, 11187682889909904, 223753657798227150, 4698826813762734240, 103374189902780197170, 2377606367763944481780
Offset: 2
Keywords
Examples
a(4) = 6 because there are exactly 6 odd permutations (of a 4-set) having 2 fixed points, namely: (12), (13), (14), (23), (24), (34).
Links
- Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830.
Crossrefs
Programs
-
Maple
egf:= x^4 * exp(-x)/(4*(1-x)); a:= n-> n! * coeff(series(egf, x, n+1), x, n): seq(a(n), n=2..30); # Alois P. Heinz, Feb 01 2011
-
Mathematica
A000387[n_] := Subfactorial[n-2] Binomial[n, 2]; a[n_] := (n(n-1)/2) A000387[n-2]; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jan 30 2025 *)
-
PARI
x = 'x + O('x^30); Vec(serlaplace(((x^4)*exp(-x))/(4*(1-x)))) \\ Michel Marcus, Apr 04 2016
Formula
E.g.f.: x^4*exp(-x)/(4*(1-x)).
D-finite with recurrence +(-n+6)*a(n) +(n-2)*(n-7)*a(n-1) +(n-2)*(n-3)*a(n-2)=0. - R. J. Mathar, Jul 06 2023
Extensions
More terms from Alois P. Heinz, Feb 01 2011