A145300 a(n) is the maximal prime such that if p_n is the n-th prime then ceiling(sqrt(a(n)*p_n))^2 - a(n)*p_n is a perfect square.
2, 7, 13, 13, 19, 23, 29, 31, 37, 43, 47, 53, 61, 61, 67, 73, 79, 83, 89, 89, 97, 103, 109, 113, 113, 131, 131, 137, 139, 139, 157, 163, 167, 173, 181, 181, 193, 199, 199, 211, 211, 211, 229, 233, 233, 239, 251, 263, 271, 271, 277, 283, 283, 293, 293, 307, 317, 317, 317, 317
Offset: 1
Keywords
Programs
-
Mathematica
a[n_] := Module[{pmax = 0, pn = Prime[n]}, p=2; While[p <= pn + 2*Floor[Sqrt[2*pn]] + 2, If[IntegerQ[Sqrt[Ceiling[Sqrt[p*pn]]^2-p*pn]], pmax = p]; p=NextPrime[p]]; pmax]; Array[a, 60] (* Amiram Eldar, Dec 16 2018 from the PARI code *)
-
PARI
a(n) = {my (pmax = 0, pn = prime(n)); forprime(p=2, pn+2*sqrtint(2*pn)+2, if (issquare((ceil(sqrt(p*pn)))^2-p*pn), pmax = p);); pmax;} \\ Michel Marcus, Dec 16 2018
Extensions
More terms from Michel Marcus, Dec 16 2018
Comments