A145294 Smallest x >= 0 such that the Euler polynomial x^2 + x + 41 has a prime divisor of multiplicity n.
0, 40, 1721, 14144, 2294005, 326924482, 6386359423, 1341160319494, 149759650255065, 1167478867440605, 243422399538851918, 9662500171353620019, 122479951673184550424, 12148820281768361731597, 177497315692809432279207, 11767210525408975519141638
Offset: 1
Keywords
Examples
a(2)=40 because when x=40 then x^2 + x + 41 = 1681 = 41^2; a(3)=1721 because when x=1721 then x^2 + x + 41 = 2963603 = 43*41^3; a(4)=14144 because when x=14144 then x^2 + x + 41 = 200066921 = 41*47^4; a(5)=2294005 because when x=2294005 then x^2 + x + 41 = 5262461234071 = 35797*43^5. a(6)=326924482: a(6)^2 + a(6) + 41 = 106879617257892847 = 9915343 * 47^6. - _Hugo Pfoertner_, Mar 08 2018
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..100
- Bert Dobbelaere, Python program
Extensions
Title changed, a(1) and a(6) from Hugo Pfoertner, Mar 08 2018
More terms from Bert Dobbelaere, Jan 22 2019
Comments