A145307 Numbers x such that there exists n in N : (x+79)^3-x^3=n^2.
7663, 3514673818, 1603752710517223, 731795569310933239378, 333919781866113706302166783, 152368264304339620843780392200938, 69525943738264857888392566815788268343, 31724827179505362919884965402334038047270498
Offset: 1
Examples
a(1)=7663 because the first relation is : (7663+79)^3-7663^3=118579^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (456303,-456303,1).
Crossrefs
Cf. A145306.
Programs
-
Mathematica
LinearRecurrence[{456303,-456303,1},{7663,3514673818,1603752710517223},20] (* Harvey P. Dale, Dec 14 2017 *)
-
PARI
Vec(79*x*(-97-228151*x+98*x^2)/((x-1)*(x^2-456302*x+1)) + O(x^30)) \\ Colin Barker, Oct 18 2014
Formula
a(n+2) = 456302*a(n+1)-a(n)+18023850.
G.f.: 79*x*(-97-228151*x+98*x^2) / ( (x-1)*(x^2-456302*x+1) ). - R. J. Mathar, Nov 27 2011
a(n) = 79*A145309(n). - R. J. Mathar, Nov 27 2011
Extensions
Editing and additional term a(8) from Colin Barker, Oct 18 2014