A145377 a(n) = A002324(n) mod 2.
1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- J. S. Rutherford, Generating functions for the cage isomers of the C_{20n} icosahedral fullerenes, J. Mathematical Chem., 14 (1993), 385-390. See Eq. (3).
- J. S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Act. Cryst. A48 (1992), 500-508. [See Sect. (7), p. 505.]
- Index entries for characteristic functions
Programs
-
Mathematica
Array[Boole@ OddQ@ If[# < 1, 0, DivisorSum[#, KroneckerSymbol[-3, #] &]] &, 105] (* Michael De Vlieger, Nov 05 2017, after Michael Somos at A002324 *)
-
PARI
A002324(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2))); A145377(n) = (A002324(n)%2); \\ Antti Karttunen, Nov 06 2017
Formula
a(n) = A195198(n) for n >= 1.
a(n) = Sum_{ m: m^2|n } A154272(n/m^2). - Andrey Zabolotskiy, May 07 2018
Extensions
More terms from Antti Karttunen, Nov 05 2017