A145388 Sum of (k,n)* for k=1,2,...,n, where (k,n)* is the greatest divisor of k which is a unitary divisor of n.
1, 3, 5, 7, 9, 15, 13, 15, 17, 27, 21, 35, 25, 39, 45, 31, 33, 51, 37, 63, 65, 63, 45, 75, 49, 75, 53, 91, 57, 135, 61, 63, 105, 99, 117, 119, 73, 111, 125, 135, 81, 195, 85, 147, 153, 135, 93, 155, 97, 147, 165, 175, 105, 159
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- S. Chen and W. Zhai, Reciprocals of the Gcd-Sum Functions, J. Int. Seq. 14 (2011) # 11.8.3.
- László Tóth, The unitary analogue of Pillai's arithmetical function, Collectanea Mathematica 40:1 (1989), pp. 19-30.
- László Tóth, The unitary analogue of Pillai's arithmetical function II, Notes Number Theory Discrete Math. 2 (1996), no 2, 40-46.
- László Tóth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS 12 (2009) 09.5.2.
- László Tóth, A survey of gcd-sum functions, J. Int. Seq. 13 (2010) # 10.8.1.
Programs
-
Maple
A145388 := proc(n) option remember; local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; if nops(pf) = 1 then 2*n-1 ; else mul(procname(op(1,p)^op(2,p)),p=pf) ; end if; end if; end proc: seq(A145388(n),n=1..70) ; # R. J. Mathar, Jan 07 2011
-
Mathematica
f[p_, e_] := 2*p^e - 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 29 2020 *)
-
PARI
a(n)=n=factor(n);prod(i=1,#n[,1],2*n[i,1]^n[i,2]-1) \\ Charles R Greathouse IV, Mar 21 2012
-
Python
from math import prod from sympy import factorint def A145388(n): return prod((p**e<<1)-1 for p,e in factorint(n).items()) # Chai Wah Wu, Feb 13 2025
Formula
Multiplicative: a(p^e) = 2*p^e - 1 for every prime power p^e.
a(n) = Sum_{k=1..n} A034444(n/gcd(n,k)) = Sum_{d|n} A000010(d) * A034444(d). - Daniel Suteu, May 26 2019
a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * uphi(n/d), where uphi is A047994. - Amiram Eldar, May 29 2020
a(n) = Sum_{d|n} abs(A023900(d))*n/d. Verified for the first 10000 terms. - Mats Granvik, Feb 13 2021
Comments